The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software–Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.
## Contents

**Send Us Your Comments** ........................................................................................................................ ix

**Preface** ........................................................................................................................................................................ xi

- Intended Audience .................................................................................................................................................. xi
- Documentation Accessibility ................................................................................................................................. xi
- Related Documents ................................................................................................................................................ xii
- Conventions ........................................................................................................................................................... xii
- Accessing Installed Documentation ................................................................................................................... xiv
- Oracle Services and Support ............................................................................................................................... xiv

### 1 Introduction to Oracle Procedural Gateway for APPC

- **1.1 Overview of the Gateway** ................................................................................................................................. 1-2
- **1.2 Features of the Gateway** .................................................................................................................................. 1-3
- **1.3 Terms** ............................................................................................................................................................... 1-5
- **1.4 Architecture of the Gateway** ......................................................................................................................... 1-7
- **1.5 Implementation of the Gateway** ..................................................................................................................... 1-9
- **1.6 Communication With the Gateway** ................................................................................................................ 1-9
- **1.7 Remote Procedural Call Functions** ................................................................................................................ 1-10
  - **1.7.1 Description of RPC Functions** .................................................................................................................. 1-10
  - **1.7.1.1 Remote Transaction Initiation** .............................................................................................................. 1-10
  - **1.7.1.2 Data Exchange** ...................................................................................................................................... 1-10
  - **1.7.1.3 Remote Transaction Termination** ....................................................................................................... 1-11
- **1.8 Transaction Types for Gateway Using SNA** ............................................................................................... 1-11
- **1.9 Transaction Types for Gateway Using TCP/IP** ......................................................................................... 1-12

### 2 Release Information

- **2.1 Product Set** ..................................................................................................................................................... 2-2
- **2.2 Changes and Enhancements, Release 10.1.0.2.0** ............................................................................................ 2-2
  - **2.2.1 Changes** .................................................................................................................................................. 2-2
  - **2.2.1.1 Bugs Fixed in Release 10.1.0.2.0** ........................................................................................................ 2-2
  - **2.2.2 Enhancements** ....................................................................................................................................... 2-3
  - **2.2.2.1 TCP/IP Support for Connecting the Gateway to IMS Connect Release 1.2** ................................ 2-3
  - **2.2.2.2 Improved Gateway Log File** ............................................................................................................. 2-3
- **2.3 Known Restrictions** ....................................................................................................................................... 2-4
  - **2.3.1 Known Restrictions for the Gateway** .................................................................................................. 2-4
3 System Requirements

3.1 Hardware Requirements ................................................................. 3-2
  3.1.1 Processor Requirements ......................................................... 3-2
  3.1.2 Memory Requirements .......................................................... 3-2
  3.1.3 Network Attachment Requirements ....................................... 3-2
  3.1.4 CD-ROM Drive ...................................................................... 3-2
  3.1.5 Disk Space Requirements ...................................................... 3-2
3.2 Software Requirements ................................................................. 3-2
  3.2.1 Operating System Requirements .......................................... 3-3
  3.2.2 Communication Protocol Requirements ............................... 3-3
  3.2.3 Oracle Server Requirements ................................................ 3-3
  3.2.4 Oracle Networking Product Requirements .......................... 3-3
  3.2.5 IBM Mainframe Requirements .............................................. 3-3
3.3 Documentation Requirements ..................................................... 3-4

4 Installing the Gateway

4.1 Before You Begin ........................................................................... 4-2
4.2 Planning to Upgrade or Migrate the Gateway .............................. 4-2
  4.2.1 Performing Pre-Upgrade Procedures .................................... 4-3
  4.2.2 Upgrade and Migration Considerations ............................... 4-3
  4.2.3 Restoration .......................................................................... 4-3
4.3 Performing Pre-Installation Procedures ....................................... 4-4
  4.3.1 Gateway Installation Methods .............................................. 4-4
4.4 Installing the Gateway Software ............................................... 4-5
4.5 Installation Steps ........................................................................... 4-5
  4.5.1 Step 1: Logon to Windows System ........................................ 4-5
  4.5.2 Step 2: Ensure Appropriate Amount of Disk Space ............... 4-5
  4.5.3 Step 3: Stop All Oracle Services .......................................... 4-5
  4.5.4 Step 4: Insert the Gateway Product CD-ROM into Your CD-ROM Drive ........... 4-5
  4.5.5 Step 5: Start the Oracle Universal Installer .......................... 4-6
  4.5.6 Step 6: Step Through the Oracle Universal Installer ............ 4-6
  4.5.6.1 Oracle Universal Installer on Windows Platforms ............ 4-6
4.6 Deinstalling Your Oracle Procedural Gateway for APPC ............. 4-8

5 Configuring Your Oracle Network

5.1 Configuring the Oracle Network for the Gateway ....................... 5-2

6 Configuring the SNA Communication Package on Windows

6.1 Using SNA Security Validation .................................................... 6-2
6.2 Processing Inbound Connections ................................................. 6-2
6.3 Configuring Your Microsoft Host Integration Server .................... 6-2
  6.3.1 Independent Versus Dependent LUs ..................................... 6-2
  6.3.2 Location of Sample SNA Server Definitions ......................... 6-3
  6.3.3 SNA Server Definition Types .............................................. 6-3
6.3.4 Methods of Creating SNA Server Definitions for the Gateway ........................................ 6-3
6.4 Creating SNA Server Definitions on Microsoft Host Integration Server .................................. 6-5
6.4.1 Server Selection ................................................................................................................. 6-5
6.4.2 Link Service Definition ...................................................................................................... 6-6
6.4.3 Connection Definition ......................................................................................................... 6-7
6.4.4 Local LU Definition ............................................................................................................ 6-9
6.4.5 Mode Definition .................................................................................................................. 6-10
6.4.6 Remote LU Definition ......................................................................................................... 6-12
6.4.7 CPI-C Symbolic Destination Name .................................................................................... 6-13
6.5 Configuring an IBM Communications Server ........................................................................ 6-15
6.5.1 Independent Versus Dependent LUs .................................................................................. 6-15
6.5.2 Definition Types ................................................................................................................ 6-15
6.6 Creating IBM Communications Server Definitions for the Gateway ........................................ 6-16
6.6.1 Creating the Configuration ............................................................................................... 6-16
6.6.2 Creating the Node .............................................................................................................. 6-16
6.6.3 Creating Devices ............................................................................................................... 6-16
6.6.4 Choosing the Device Type ............................................................................................... 6-16
6.6.5 Configuring a LAN Device ............................................................................................... 6-16
6.6.6 Creating Peer Connections .............................................................................................. 6-17
6.6.7 Defining the Link Station ................................................................................................. 6-17
6.6.8 Defining the Adjacent Node ............................................................................................. 6-17
6.6.9 Creating Local LUs .......................................................................................................... 6-17
6.6.10 Defining Local LUs ......................................................................................................... 6-17
6.6.11 Creating Partner LUs ...................................................................................................... 6-17
6.6.12 Defining Partner LUs ..................................................................................................... 6-18
6.6.13 Creating the CPI-C Side Information Profile .................................................................. 6-18
6.7 Testing the Connection ......................................................................................................... 6-18
6.8 Resume Configuration of the Gateway .................................................................................. 6-19

7 Configuring the TCP/IP Communications Package for IMS Connect

7.1 Configuring TCP/IP for IMS Connect on Windows Platforms .............................................. 7-2

8 Configuring the OLTP

8.1 Configuring the OLTP for Your SNA Environment ................................................................. 8-2
8.2 Configuring the OLTP for Your TCP/IP Environment ............................................................ 8-8

9 Gateway Configuration Using SNA Communication Protocol

9.1 Before You Begin .................................................................................................................. 9-2
9.2 Preparing to Configure a Gateway Installation/Upgrade ....................................................... 9-2
9.3 Integrating Server Configuration: First-Time Gateway Installations .................................... 9-5
9.4 Upgrading or Migrating the Oracle Server from Previous Gateways ................................... 9-8
9.4.1 If You Must Reinstall Package Specifications ................................................................. 9-8
9.4.2 Upgrading PGAU From Previous Gateway Releases ....................................................... 9-9
9.5 Configuring the Oracle Integrating Server for Gateways to Coexist ................................... 9-10
9.6 Optional Configuration Steps to Permit Multiple Users ....................................................... 9-10
9.7 Configuring the Gateway .................................................................................................... 9-13
10 Gateway Configuration Using TCP/IP Communication Protocol

10.1 Before You Begin ........................................................................................................... 10-2
10.2 Preparing to Configure a Gateway Installation ............................................................. 10-2
10.3 Configuring the Oracle Integrating Server ................................................................. 10-4
10.4 Optional Configuration Steps to Permit Multiple Users .............................................. 10-8
10.5 Configuring TCP/IP for the Gateway .......................................................................... 10-11
10.6 Configuring the Gateway ............................................................................................ 10-11
10.7 Loading the PGA_TCP_IMSC Table ............................................................................ 10-12
10.8 Verifying the Gateway Installation and OLTP Configuration .................................... 10-13
10.8.1 Verifying the Gateway Installation ................................................................. 10-13
10.8.2 Verifying the OLTP Configuration ....................................................................... 10-14
10.8.2.1 IMS/TM Verification ............................................................................. 10-14
10.9 Performing Post-installation Procedures .................................................................... 10-16
10.9.1 Installing Sample Applications ........................................................................... 10-16

11 Security Requirements

11.1 Overview of Security Requirements .......................................................................... 11-2
11.2 Authenticating Application Logons ............................................................................ 11-2
11.3 Defining and Controlling Database Links .................................................................... 11-3
11.3.1 Link Accessibility ............................................................................................... 11-3
11.3.2 Links and CONNECT Clauses .......................................................................... 11-3
11.4 Using SNA Security Validation .................................................................................... 11-4
11.4.1 Specifying SNA Conversation Security ............................................................ 11-4
11.4.1.1 SNA Security Option SECURITY=None ..................................................... 11-4
11.4.1.2 SNA Security Option SECURITY=Program .............................................. 11-4
11.5 TCP/IP Security ......................................................................................................... 11-5
11.5.1 Specifying TCP/IP Conversation Security ............................................................ 11-5
11.5.1.1 TCP/IP Security Option SECURITY=None .................................................. 11-5
11.5.1.2 TCP/IP Security Option SECURITY=Program ........................................... 11-5
11.6 Passwords in the Gateway Initialization File .............................................................. 11-7
11.6.1 Using the pg4pwd Utility ..................................................................................... 11-7
12 Migration From Existing Gateways
12.1.1 Step 1: Install the New Release ............................................................................... 12-2
12.1.2 Step 2: Transfer *initsid.ora* Gateway Initialization File Parameters ...................... 12-2
12.1.3 Backout Considerations When Migrating to New Releases .................................. 12-2
12.1.4 Oracle Net Considerations .................................................................................... 12-2
12.1.5 Parameter Changes: Version 4 to Release 10.1.0.2.0 of the Gateway ...................... 12-3
12.1.6 Parameter Changes: Version 8 or Earlier to Gateway Release 10.1.0.2.0 .............. 12-5
12.1.7 Migrating from Gateway Release 9.0.1 or 9.2.0 to Gateway Release 10.1.0.2.0 ..... 12-5
12.2 Migrating from an Existing Gateway Using SNA to TCP/IP .................................... 12-5
12.2.1 To Use Existing TIPs with Existing SideProfile Definitions ................................... 12-5
12.2.2 To Use Existing TIPs with LU/TP/LOGMODE Names ............................................ 12-6

A Gateway Initialization Parameters for SNA Protocol
A.1 Gateway Initialization Parameter File Using SNA Protocol ......................................... A-2
A.1.1 PGA Parameters ...................................................................................................... A-2
A.1.2 PGA_CAPABILITY Parameter Considerations .................................................... A-4
A.1.3 PGA_CONFIRM Parameter Considerations ....................................................... A-6
A.1.4 Sample listener.ora file for a Gateway using SNA .................................................. A-7
A.1.5 Sample tnsnames.ora file for a Gateway using SNA ............................................. A-7

B Gateway Initialization Parameters for TCP/IP Communication Protocol
B.1 Gateway Initialization Parameter File Using TCP/IP ................................................... B-2
B.1.1 PGA Parameters ...................................................................................................... B-2
B.2 Output for pg4tcpmap Tool ....................................................................................... B-4
B.2.1 Sample listener.ora file for a Gateway using TCP/IP ............................................. B-5
B.2.2 Sample tnsnames.ora file for a Gateway using TCP/IP .......................................... B-6

C Gateway Terminology
C.1 Gateway Term Definitions .......................................................................................... C-2

D Summary of Changes in Previous Versions
D.1 Changes and Enhancements in Previous Versions ...................................................... D-2
D.1.1 Release 9.2.0.1.0 .................................................................................................. D-2
D.1.2 Release 9.0.1.1.0 ................................................................................................. D-2
D.1.3 Release 9.0.1.0.1 ................................................................................................ D-2
D.1.4 Release 8.0.6.0.0 ................................................................................................. D-3
D.1.5 Release 4.0.1.1.0 ................................................................................................. D-4
D.2 Corrected Problems in Previous Versions .................................................................. D-5
D.2.1 Release 9.2.0.1.0 ................................................................................................ D-5
D.2.2 Release 9.0.1.0.1 ................................................................................................. D-6
D.2.3 Release 8.0.6.0.0 ................................................................................................. D-7
D.2.4 Release 4.0.1.1.0 ................................................................................................. D-7
D.3 Known Restrictions in Previous Releases .................................................................... D-8
D.3.1 Release 9.2.0.1.0 ................................................................................................ D-8
E Configuration Worksheet

Index
Send Us Your Comments

Oracle Procedural Gateway for APPC Installation and Configuration Guide, 10g Release 1 (10.1) for Microsoft Windows
Part No. B13694-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication. Your input is an important part of the information used for revision.

- Did you find any errors?
- Is the information clearly presented?
- Do you need more information? If so, where?
- Are the examples correct? Do you need more examples?
- What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and part number of the documentation and the chapter, section, and page number (if available). You can send comments to us at the following e-mail address:

infoibm_us@oracle.com

If you would like a reply, please provide your name, address, telephone number, and electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support Services.
Preface

The Oracle Procedural Gateway for APPC provides Oracle applications with seamless access to IBM mainframe data and services through Remote Procedure Call (RPC) processing.

Refer to the Oracle Database Installation Guide 10g Release 1 (10.1) for Microsoft Windows and to the certification matrix on the OracleMetaLink Web site for the most up-to-date list of certified hardware platforms and operating system versions. The OracleMetaLink Web site can be found at:

http://metalink.oracle.com

Intended Audience

Read this guide if you are responsible for tasks such as:

■ determining hardware and software requirements
■ installing, configuring, or administering an Oracle Procedural Gateway for APPC
■ developing applications that access remote host databases through the gateway using either the SNA communication protocol or the TCP/IP for IMS Connect communication protocol.
■ determining security requirements
■ determining and resolving problems

Before using this guide to administer the gateway, you should understand the fundamentals of the Windows operating system, SNA Server, the Procedural Gateways, PL/SQL and the Oracle Integrating Server.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For additional information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/
Accessibility of Code Examples in Documentation  JAWS, a Windows screen reader, may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, JAWS may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation  This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Related Documents

The Oracle Procedural Gateway for APPC Installation and Configuration Guide for Microsoft Windows is included as part of your product shipment. Also included is:

- Oracle Procedural Gateway for APPC Messages Guide for UNIX and Microsoft Windows
- Oracle Procedural Gateway for APPC User’s Guide for Microsoft Windows

You might also need Oracle server and Oracle Net documentation. The following is a useful list of the Oracle publications that may be referenced in this book:

- Oracle Database Installation Guide 10g Release 1 (10.1) for Microsoft Windows
- Oracle Database Administrator’s Guide 10g Release 1 (10.1) for Microsoft Windows
- Oracle Database Application Developer’s Guide
- Oracle Database Concepts
- Oracle Database Server Distributed Systems
- Oracle Database Error Messages
- Oracle Net Services Administrator’s Guide

Other related publications are listed in “Documentation Requirements” on page 3-4. Refer to the Oracle Technical Publications Catalog and Price Guide for a complete list of documentation provided for Oracle products.

Conventions

Examples of input and output for the gateway and Oracle environment are shown in a special font:

```
C:\> mkdir \ORACLE\your_name
```

All output is shown as it appears. For input, the list of conventions and their meanings are as follows:

- **example text:** Words or phrases, such as `mkdir` and `ORACLE`, must be entered exactly as spelled and in the letter case shown. In this example, `mkdir` must be entered in lowercase letters and `ORACLE` in uppercase letters.
- **italic text:** Italicized uppercase or lowercase, such as `your_name`, indicates that you must substitute a word or phrase, such as the actual directory name.
- **BOLD text** or **bold italic TEXT:** Bold words or phrases refer to a file or directory structure, such as a directory, path, or file ID.
...: Ellipses indicate that the preceding item can be repeated. You can enter an 
arbitrary number of similar items.

{ }: Curly braces indicate that one of the enclosed arguments is required. Do not 
enter the braces themselves.

|: Vertical lines separate choices.

[ ]: Square brackets enclose optional clauses from which you can choose one or 
none. Do not enter the brackets themselves.

Other punctuation, such as commas, quotation marks or the pipe symbol (|) must be 
entered as shown unless otherwise specified. Directory names, file IDs and so on 
appear in the required letter case in examples. The same convention is used when 
these names appear in text, and the names are highlighted in **bold**. The use of *italics*
indicates that those portions of a file ID that appear in *italics* can vary.

Gateway commands, file IDs reserved words, MS-DOS commands, keywords and 
environment variables appear in uppercase in examples and text. Reserved words 
must always be entered as shown; they have reserved meanings within the Oracle 
system.

**SQL*Plus Prompts**
The SQL*Plus prompt, `SQL>`, appears in SQL statement and SQL*Plus command 
examples. Enter your response at the prompt. Do not enter the text of the prompt, 
`SQL>`, in your response.

**MS-DOS Prompts**
The MS-DOS prompt, `C:\>`, appears in MS-DOS command examples. Enter your 
response at the prompt. Do not enter the text of the prompt, `C:\>`, in your response.

**PGAU Prompts**
The PGAU prompt, `PGAU>`, appears in PGAU command examples. Enter your 
response at the prompt. Do not enter the text of the prompt, `PGAU>`, in your response.

**Directory Names**
Throughout this document, there are references to the directories in which 
product-related files reside. `%ORACLE_HOME%` is used to represent the Oracle 
home directory. This is the default location for Oracle products. If you have installed 
into a location other than `%ORACLE_HOME%`, replace all references to 
[%ORACLE_HOME%] with the drive and path specification you have used.

**Storage Measurements**
Storage measurements use the following abbreviations:

- K, for kilobyte which equals 1 024 bytes
- M, for megabyte which equals 1 048 576 bytes
- G, for gigabyte which equals 1 073 741 824 bytes
Accessing Installed Documentation

**Documentation for Oracle Procedural Gateway for APPC for Windows**

Documentation for this product includes this guide and the *Oracle Procedural Gateway for APPC User’s Guide, 10g Release 1 (10.1) Microsoft Windows* and the *Oracle Procedural Gateway for APPC Messages Guide, 10g Release 1 (10.1) for UNIX and Microsoft Windows*.

To access the documentation in HTML and PDF formats, use a browser to open the top level of the Gateway Documentation CD-ROM. This level contains links to product and Windows-specific documentation.

**Oracle Product Documentation**

Oracle product documentation is on the Oracle Database Generic Documentation CD-ROM. Instructions for accessing and installing the documents on the CD-ROM are found in the README file on the top level directory of the CD-ROM.

**Oracle Services and Support**

Oracle’s corporate web page is at the following address:

http://www.oracle.com

Oracle offers a wide range of services to help facilitate corporate system solutions, including Oracle Education courses, Oracle Consulting services, and Oracle Support Services from the Web site. In addition, Oracle provides free trial software, updates on Oracle products and service, and technical brochures and data sheets.

**Oracle Support Services**

Technical Support registration and contact information worldwide is available at the following address:

http://www.oracle.com/support

At Oracle’s support site, you will find templates to help you prepare information about your problem before you call so that you may be helped more quickly. You will also need your CSI number (if applicable) or complete contact details, including any special project information.

**Oracle Technology Network**

OTN delivers all product documentation, as well as technical papers, code samples, self-service developer support, and Oracle’s key developer products to enable rapid development and deployment of applications built on Oracle technology.

Register with the Oracle Technology Network (OTN) at:

http://otn.oracle.com

All Oracle product documentation can be found at:

http://otn.oracle.com/documentation
**OracleMetaLink**
OracleMetaLink is Oracle’s web service for technical information. Members of OracleMetaLink can search for updates, alerts, patches, and other information about products, releases, and operating systems, or set preferences to be notified automatically of new information. OracleMetaLink offers a variety of services to assist in setting up and administrating Oracle products, including procedures, scripts, commentary, and tuning and configuration best-practices bulletins.

Logon to OracleMetaLink before installing or administrating your product to search for up to date information about Oracle Database for Microsoft Windows.

In addition, OracleMetaLink offers forums for information sharing among Oracle customers, and direct communication with Oracle Support Services. OracleMetaLink is available to Product Support Customers at no extra cost. Sign up for free membership for this service at the following site:

http://www.oracle.com/support/metalink

Use your Support Access Code (SAC) number to register.

**Oracle Products and Other Documentation**
For U.S.A. customers, the Oracle Store is at:

http://store.oracle.com

Links to Stores in other countries are provided from this site.

**Customer Service**
Oracle Support Services contacts are listed at:

http://www.oracle.com/support

**Support for Hearing and Speech Impaired Customers**
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week.

- For technical questions, call:
  1.800.446.2398
- For non-technical questions, call:
  1.800.464.2330

**Education and Training**
Training information and worldwide schedules are available from:

http://education.oracle.com
The Oracle Procedural Gateway for APPC (the "gateway") enables users to initiate transaction program execution on remote online transaction processors (OLTPs). The Oracle Procedural Gateway for APPC can establish connection with OLTP using the SNA communication protocol. The gateway can also use TCP/IP for IMS Connect to establish communication with the OLTP through TCP/IP. The gateway provides Oracle applications with seamless access to IBM mainframe data and services through Remote Procedural Call (RPC) processing. The gateway can access any application capable of using the CPI-C API either directly or through a TP monitor such as CICS.

This chapter discusses the architecture, uses and features of the gateway. It contains the following sections:

- "Overview of the Gateway" on page 1-2
- "Features of the Gateway" on page 1-3
- "Terms" on page 1-5
- "Architecture of the Gateway" on page 1-7
- "Implementation of the Gateway" on page 1-9
- "Communication With the Gateway" on page 1-9
- "Remote Procedural Call Functions" on page 1-10
- "Transaction Types for Gateway Using SNA" on page 1-11
- "Transaction Types for Gateway Using TCP/IP" on page 1-12
1.1 Overview of the Gateway

The Oracle Procedural Gateway for APPC extends the Remote Procedural Call (RPC) facilities available with the Oracle server. The gateway enables any client application to use PL/SQL to request execution of a remote transaction program (RTP) residing on a host. The gateway provides RPC processing to systems using the SNA APPC (Advanced Program-to-Program Communication) protocol and to systems using TCP/IP for IMS Connect protocol. This architecture allows efficient access to data and transactions available on the IBM mainframe and IMS, respectively.

The gateway requires no Oracle software on the remote host system. Thus, the gateway uses existing transactions with little or no programming effort on the remote host.

- For gateways using SNA only: The use of a generic and standard protocol, APPC, allows the gateway to access a multitude of systems. The gateway can communicate with virtually any APPC-enabled system, including IBM Corporation’s CICS on any platform, IBM Corporation’s IMS and APPC/MVS, and Computer Associates’ IDMS. These transaction monitors provide access to a broad range of systems, allowing the gateway to access many datastores, including VSAM, DB2 (static SQL), IMS, IDMS, ADABAS and others.

The gateway can access any application capable of using the CPI-C API either directly or through a TP monitor such as CICS.
1.2 Features of the Gateway

The Oracle Procedural Gateway for APPC provides the following benefits:

- TCP/IP support for IMS Connect
  This release of the gateway includes TCP/IP support for IMS Connect, giving users a choice of whether to use the SNA or TCP/IP communication protocol. IMS Connect is an IBM product which allows TCP/IP clients to trigger execution of IMS transactions. The gateway can use a TCP/IP communication protocol to access IMS Connect, which triggers execution of IMS transactions. If you choose to use TCP/IP, there is no SNA involvement with this configuration. Related to this new feature of the gateway is:
  - The pg4tcpmap tool. This release of the gateway includes a new tool whose purpose is to map the information from your Side Profile Name to TCP/IP and IMS Connect. You may turn on a trace for this tool as well. For more information about the gateway mapping tool, refer to Chapter 6 of the Oracle Procedural Gateway for APPC User’s Guide, and to Chapter 10, “Gateway Configuration Using TCP/IP Communication Protocol” in this guide.

- Fast interface
  The gateway is optimized so that remote execution of a program is achieved with minimum network traffic. The interface to the gateway is an optimized PL/SQL stored procedure specification (called the “TIP” or "transaction interface package") precompiled in the Oracle Integrating Server. Because there are no additional software layers on the remote host system, overhead occurs only when your program executes.

- Location transparency
  Client applications need not be operating system-specific. For example, your application can call a program on a CICS Transaction Server for z/OS. If you move the program to a CICS region on pSeries, then you need not change the application.

- Application transparency
  Users calling applications that execute a remote transaction program are unaware that a request is sent to a host.

- Flexible interface
  You can use the gateway to interface with existing procedural logic or to integrate new procedural logic into an Oracle Integrating Server environment.

- Oracle server integration
  The integration of the Oracle server with the gateway enables the gateway to benefit from existing and future Oracle features. For example, the gateway can be called from an Oracle stored procedure or database trigger.

- Transactional support
  The gateway and the Oracle Integrating Server allow remote transfer updates and Oracle server updates to be performed in a coordinated fashion.

- Wide selection of tools
  The gateway supports any tool or application that supports PL/SQL.
- PL/SQL code generator
  The Oracle Procedural Gateway for APPC provides a powerful development environment, including:
  - a data dictionary to store information relevant to the remote transaction
  - a tool to generate the PL/SQL Transaction Interface Package, or TIP
  - a report utility to view the information stored in the gateway dictionary
  - a complete set of tracing and debugging facilities
  - a wide set of samples to demonstrate the use of the product against datastores such as DB2, IMS, IDMS, CICS, and ADABAS

- Site autonomy and security
  The gateway provides site autonomy, allowing you to do such things as authenticate users. It also provides role-based security compatible with any security package running on your mainframe computer.

- Automatic conversion
  Through the TIP, the following conversions are performed:
  - ASCII to and from EBCDIC
  - remote transaction program datatypes to and from PL/SQL datatypes
  - national language support for many languages
1.3 Terms

The following terms and definitions are used throughout this guide. Refer to Appendix C, “Gateway Terminology” for a more complete list of terms and definitions pertaining to the gateway, its components and functions.

Oracle Integrating Server

This is any Oracle server instance that communicates with the gateway for purposes of performing remote procedural calls to execute remote transaction programs (RTP). The Oracle Integrating Server can be on the same system as the gateway or on a different system. If it is on a different system, then Oracle Net is required on both systems. Refer to Figure 1–2, “Gateway Architecture” for a view of the gateway architecture.

OLTP (Online Transaction Processor)

OLTP is any of a number of online transaction processors available from other vendors, including CICS Transaction Server for z/OS, IMS/TM, z/OS and IDMS-DC.

PGAU (Procedural Gateway Administration Utility)

PGAU is the tool that is used to define and generate PL/SQL transaction interface packages (TIPs). Refer to Chapter 2, "Procedural Gateway Administration Utility” in the Oracle Procedural Gateway for APPC User’s Guide for more information about PGAU.

PG DD (Data Dictionary)

This component of the gateway is a repository of remote host transaction definitions and data definitions. PGAU accesses definitions in the PG DD when generating TIPs. The PG DD has datatype dependencies because it supports the PGAU and is not intended to be directly accessed by the customer. Refer to Appendix A, "Procedural Gateway for APPC Data Dictionary” in the Oracle Procedural Gateway for APPC User’s Guide for a list of PG DD tables.

RPC (Remote Procedural Call)

RPC is a programming call that executes program logic on one system in response to a request from another system. Refer to "Gateway Term Definitions” on page C-2 for more information, and refer to Appendix C, "Gateway RPC Interface” in the Oracle Procedural Gateway for APPC User’s Guide as well.

RTP (Remote Transaction Program)

A remote transaction program is a customer-written transaction, running under the control of an OLTP, which the user invokes remotely using a PL/SQL procedure. To execute a remote transaction program through the gateway, you must use RPC to execute a PL/SQL program to call the gateway functions.

TIP (Transaction Interface Package)

A TIP is an Oracle PL/SQL package that exists between your application and the remote transaction program. The transaction interface package, or TIP, is a set of PL/SQL stored procedures that invoke the remote transaction program through the gateway. TIPs perform the conversion and reformattting of remote host data using PL/SQL and UTL_RAW/UTL_PG functions.
Figure 1–1, "Relationship of Gateway and Oracle Integrating Server on Windows" illustrates where the terminology discussed in the preceding sections apply within the gateway’s architecture.

**Figure 1–1  Relationship of Gateway and Oracle Integrating Server on Windows**
1.4 Architecture of the Gateway

The architecture of Oracle Procedural Gateway for APPC consists of several components:

1. **Oracle Integrating Server**

   The Oracle Integrating Server is usually installed on the same system as Oracle Procedural Gateway for APPC.

   If you install the Oracle Integrating Server on a system other than the system on which the gateway is installed, then you must install Oracle Net with the Oracle Integrating Server and with the gateway. The Oracle Integrating Server must be capable of connecting to the gateway through any supported Oracle Net protocol.

   Refer to "Product Set" on page 2-2 for a list of Oracle Net protocols currently supported by the gateway and tools.

   The Oracle Integrating Server can also be used for non-gateway applications.

2. **The gateway**

   Oracle Procedural Gateway for APPC must be installed on a server that can run the required version of the operating system.

3. **An OLTP (online transaction processor)**

   The OLTP must be accessible from the gateway using your SNA or TCP/IP communication protocol. Multiple Oracle Integrating Servers can access the same gateway. A single system gateway installation can be configured to access more than one OLTP.

   - **For a gateway using TCP/IP support for IMS Connect**: The only OLTP that is supported through TCP/IP is IMS through IMS Connect.

     The OLTP must be accessible to the system using the TCP/IP protocol. Multiple Oracle Integrating Servers can access the same gateway. A single system gateway installation can be configured to access more than one OLTP. Multiple IMS can be accessed from an IMS Connect. If you have a number of IMS Connect systems available, any of these may be connected to one or more IMS systems.
Figure 1–2 illustrates the architecture of Oracle Procedural Gateway for APPC using either SNA or TCP/IP, as described in the preceding section.

*Figure 1–2 Gateway Architecture*
1.5 Implementation of the Gateway

The basic structure of the gateway is the same whether your communications protocol is SNA or TCP/IP support for IMS Connect. The gateway has some of the same components as an Oracle database instance on Microsoft Windows. It has the following components:

- a home directory, similar to the one associated with an Oracle instance’s ORACLE_HOME environment variable;
- a system identifier, identified as \textit{sid} or ORACLE_SID;
- an initialization parameter file, similar to the Oracle Integrating Server’s \texttt{init\_sid.ora} file.

The gateway does not have:

- control, redo log, or database files;
- the full set of subdirectories and ancillary files associated with an installed Oracle server.

Because the gateway has no background processes and does not need a management utility such as Oracle Enterprise Manager, you do not need to start the gateway product. Each Oracle Integrating Server user session that accesses a particular gateway creates an independent process on Windows which in turn runs the gateway server and executes either the SNA or TCP/IP functions to communicate with an OLTP.

1.6 Communication With the Gateway

All of the communication between the user or client program and the gateway is handled through a transaction interface package (TIP) which executes on an Oracle Integrating Server. The TIP is a standard PL/SQL package that provides the following functions:

- declares the PL/SQL variables that can be exchanged with a remote transaction program;
- calls the gateway packages that handle the communications for starting the conversation, exchanging data and terminating the conversation;
- handles all datatype conversions between PL/SQL datatypes and the target program datatypes.

The Procedural Gateway Administration Utility (PGAU), provided with the gateway, automatically generates the TIP specification.

The gateway is identified to the Oracle Integrating Server using a database link. The database link is the same construct used to identify other Oracle server databases. The functions in the gateway are referenced in PL/SQL as:

\texttt{function\_name@dblink\_name}
1.7 Remote Procedural Call Functions

The Oracle Procedural Gateway for APPC provides a set of functions that are invoked by the client through remote procedural call (RPC). These functions direct the gateway to initiate, transfer data with, and terminate remote transaction programs running under an OLTP on another system.

Table 1–1 lists the remote procedural call functions and the correlating commands that are invoked in the gateway and remote host.

Table 1–1  RPC Functions and Commands in the Gateway and Remote Host

<table>
<thead>
<tr>
<th>Applications</th>
<th>Oracle TIP</th>
<th>Gateway</th>
<th>Remote Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>call tip_init</td>
<td>tip_init</td>
<td>PGAINIT</td>
<td>Initiate program</td>
</tr>
<tr>
<td></td>
<td>call pgainit@gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>call tip_main</td>
<td>tip_main</td>
<td>PGAXFER</td>
<td>Exchange data</td>
</tr>
<tr>
<td></td>
<td>call pgaxfer@gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>call tip_term</td>
<td>tip_term</td>
<td>PGATERM</td>
<td>Terminate program</td>
</tr>
<tr>
<td></td>
<td>call pgaterm@gateway</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.7.1 Description of RPC Functions

The following sections describe how the RPC functions perform on gateways using SNA or TCP/IP communication protocols.

1.7.1.1 Remote Transaction Initiation

The TIP initiates a connection to the remote host system, using one of the gateway functions, PGAINIT.

When the communication protocol is SNA: PGAINIT provides, as input, the required SNA parameters to start a conversation with the target transaction program. These parameters are sent across the SNA network, which returns a conversation identifier to PGAINIT. Any future calls to the target program use the conversation identifier as an INPUT parameter.

When the communication protocol is TCP/IP: PGAINIT provides, as input, the required TCP/IP parameters. Use the pg4tcpmap tool to map the parameters. These parameters are sent across the TCP/IP network to start the conversation with the target transaction program; the TCP/IP network returns a socket file descriptor to PGAINIT. Any future calls to the target program use the socket file descriptor, such as PGAXFER and PGATERM, as an input parameter.

Refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol" in this guide, and to Chapter 6 in the Oracle Procedural Gateway for APPC User’s Guide, for more information about the function and use of the pg4tcpmap tool.

1.7.1.2 Data Exchange

After the conversation is established, a procedural gateway function called PGAXFER can exchange data in the form of input and output variables. PGAXFER sends and receives buffers to and from the target transaction program. The gateway sees a buffer as only a RAW stream of bytes. The TIP that is residing in the Oracle Integrating Server is responsible for converting the application’s PL/SQL datatypes to RAW before sending the buffer to the gateway. It is also responsible for converting RAW to the PL/SQL datatypes before returning the results to the application.
1.7.1.3 Remote Transaction Termination
When communication with the remote program is complete, the gateway function PGATERM terminates the conversation between the gateway and the remote host.

When the communication protocol is SNA: PGATERM uses the conversation identifier as an INPUT parameter to request conversation termination.

When the communication protocol is TCP/IP: PGATERM uses the socket file descriptor for TCP/IP as an INPUT parameter to request conversation termination.

1.8 Transaction Types for Gateway Using SNA
The Oracle Procedural Gateway for APPC supports three types of transactions that read data from and write data to remote host systems:

- **one-shot**
  In a one-shot transaction, the application initializes the connection, exchanges data and terminates the connection, all in a single call.

- **persistent**
  In a persistent transaction, multiple calls to exchange data with the remote transaction can be executed before terminating the conversation.

- **multi-conversational**
  In a multi-conversation transaction, the procedural gateway server can be used to exchange multiple records in one call to the remote transaction program.

Refer to "Remote Host Transaction Types" in Chapter 4, "Client Application Development" of the Oracle Procedural Gateway for APPC User's Guide for more information about transaction types.

The following list demonstrates the power of the Oracle Procedural Gateway for APPC:

- You can initiate a CICS transaction on the mainframe to retrieve data from a VSAM file for a PC application.
- You can modify and monitor the operation of a remote process control computer.
- You can initiate an IMS/TM transaction that executes static SQL in DB2.
- You can initiate a CICS transaction that returns a large number of records in a single call.
1.9 Transaction Types for Gateway Using TCP/IP

The Oracle Procedural Gateway for APPC using TCP/IP for IMS Connect supports three types of transaction socket connections:

- **transaction socket**
  The socket connection lasts across a single transaction.

- **persistent socket**
  The socket connection lasts across multiple transactions.

- **non-persistent socket**
  The socket connection lasts across a single exchange consisting of one input and one output.

---

**Note:** Do not use the non-persistent socket type if you plan on implementing conversational transactions because multiple connects and disconnects will occur.

---

Refer to the section about pg4tcpmap commands in Chapter 6 of the *Oracle Procedural Gateway for APPC User’s Guide* and to Chapter 10, "Gateway Configuration Using TCP/IP Communication Protocol" in this guide for more information about how to enter these parameters.

You can initiate an IMS/TM transaction that executes static SQL in DB2; this illustrates the power of the Oracle Procedural Gateway for APPC’s feature supporting TCP/IP for IMS Connect.
This chapter provides information about this release of the Oracle Procedural Gateway for APPC. It contains the following sections:

- "Product Set" on page 2-2
- "Changes and Enhancements, Release 10.1.0.2.0" on page 2-2
- "Known Restrictions for the Gateway" on page 2-4
2.1 Product Set

The distribution CD for this release of the Oracle Procedural Gateway for APPC includes the following production components:

- Oracle Procedural Gateway for APPC Release 10.1.0.2.0
- Oracle Net Release 10.1.0.2.0

2.2 Changes and Enhancements, Release 10.1.0.2.0

The following sections detail the changes and enhancements in this release of the Oracle Procedural Gateway for APPC.

2.2.1 Changes

The following section provides information on changes to this release of the Oracle Procedural Gateway for APPC.

2.2.1.1 Bugs Fixed in Release 10.1.0.2.0

Table 2–1 lists the bugs that were fixed in Release 10.1.0.2.0 of the gateway.

<table>
<thead>
<tr>
<th>Bug Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1310776</td>
<td>PG4APPC to support TCP/IP connectivity to IMS.</td>
</tr>
<tr>
<td>1472845</td>
<td>Receiving message ORA-1401: handling multiple items in one call to PGAXFER causes error.</td>
</tr>
<tr>
<td>1847587</td>
<td>Receiving message ORA-2047: executing procedures against read-only gateways.</td>
</tr>
<tr>
<td>1853035</td>
<td>The gateway generates the wrong message (PGA-20936) instead of generating message number PGA-20938.</td>
</tr>
<tr>
<td>1919413</td>
<td>Receiving an ORA-28528 error (Heterogeneous Services datatype conversion error) when sending a buffer of more than 4K of data to CICS.</td>
</tr>
<tr>
<td>1920013</td>
<td>Test case tgpsm#34 fails with error message PGA-20910, rc=219, and errno = 9 instead of PGA-20934.</td>
</tr>
<tr>
<td>2088612</td>
<td>Receiving message ORA-1401: inserted value too large for column.</td>
</tr>
<tr>
<td>2222386</td>
<td>Transferring more than 32760 bytes in a RAW field. Customer receives error message ORA-01401: &quot;inserted value too large for column&quot;. When the gateway attempts to transfer 32760 or more bytes back to Oracle in a single transfer, the result is ORA-02055: &quot;distributed update operation failed; rollback required&quot;.</td>
</tr>
<tr>
<td>2505566</td>
<td>PGDDVCHK.SQL doesn’t require spooling file.</td>
</tr>
<tr>
<td>2526386</td>
<td>CMDEAL not called in certain error situations in PGAXFER.</td>
</tr>
<tr>
<td>2691119</td>
<td>ORA-06510; PL/SQL: Unhandled user-defined exception when using PGATRAC.</td>
</tr>
<tr>
<td>3067506</td>
<td>Savepoint and rollback savepoint are not supported by PG4APPC.</td>
</tr>
</tbody>
</table>
2.2.2 Enhancements

Components of the Oracle Procedural Gateway for APPC are based on Oracle Database 10g Server, Release 10.1.0.2.0 (the Oracle Integrating Server).

2.2.2.1 TCP/IP Support for Connecting the Gateway to IMS Connect Release 1.2

This release of the gateway includes TCP/IP support for IMS Connect. IMS Connect is an IBM product which allows TCP/IP clients to trigger execution of IMS transactions. The gateway can use a TCP/IP communication protocol to access IMS Connect, which triggers execution of IMS transactions. There is no SNA involvement with this configuration. Related to this new feature of the gateway is:

- The pg Create tool. This release of the gateway includes a new tool whose purpose is to map the information from your Side Profile Name to TCP/IP and IMS Connect attributes. You may turn on a trace for this tool as well. For more information about the gateway mapping tool, refer to Chapter 6 of the Oracle Procedural Gateway for APPC User’s Guide, and to Chapter 10, "Gateway Configuration Using TCP/IP Communication Protocol" in this guide.

2.2.2.2 Improved Gateway Log File

The log file for the gateway remote application has been improved.
2.3 Known Restrictions

The following sections list the known restrictions for the Oracle Procedural Gateway for APPC and PGAU.

2.3.1 Known Restrictions for the Gateway

The following restrictions are known to exist in this release of the Oracle Procedural Gateway for APPC.

**Multibyte Character Sets are Not Supported for Numeric Data and Clauses**

The Oracle Procedural Gateway for APPC has supported multibyte character set data for COBOL PIC G data types since version 3.4. However, the non-numeric character data (such as $, (,), +, -, .) that is allowed in DISPLAY data types and PIC 9 edit masks must still be specified in EBCDIC. The non-numeric character data is not subject to MBCS translation.

**CICS Transactions Do Not Allow PF Key Emulation**

When performing a CICS transaction using the Oracle Procedural Gateway for APPC, you cannot emulate CICS PF keys.

**APPC PIP Data is Not Supported**

You cannot define and transmit APPC PIP data in this release of the Oracle Procedural Gateway for APPC.

**Floating Point Datatype Conversion is Not Supported**

Conversion of the floating point datatype is not supported by the Oracle Procedural Gateway for APPC.

**Transaction Programs are Responsible for All Data Compression and Decompression**

The Oracle Procedural Gateway for APPC does not provide exits for compression and decompression facilities. All data exchanged between the gateway and the transaction must be in uncompressed format.

2.3.2 Known Restrictions for PGAU

**Restrictions with PGAU COBOL COPY REPLACE**

When COBOL input to the PGAU DEFINE DATA statement contains a COPY REPLACE clause, only the first replacement is made.
This chapter describes the system requirements of the gateway. It contains the following sections:

- "Hardware Requirements" on page 3-2
- "Software Requirements" on page 3-2
- "Documentation Requirements" on page 3-4
3.1 Hardware Requirements

The hardware requirements for this release of the gateway on Microsoft Windows are described in the following sections.

3.1.1 Processor Requirements

Refer to the Oracle Database Installation Guide 10g Release 1 (10.1) for Microsoft Windows and to the certification matrix on the OracleMetaLink for the most up-to-date list of certified hardware platforms and operating system version requirements to operate the gateway for your system. The OracleMetaLink Web site can be found at:

http://metalink.oracle.com

The Oracle Procedural Gateway for APPC requires an Intel or 100% compatible personal computer based on a Pentium processor that can run Microsoft Windows 2000 and higher.

3.1.2 Memory Requirements

For most installations, Oracle recommends a minimum of 256MB of real memory for the machine running the Oracle Procedural Gateway for APPC. Each concurrent use of the gateway requires a minimum of 10MB.

The following factors affect the virtual memory requirements of the gateway server process:

- number of concurrent gateway connections open by each user;
- number of data items being transferred between the gateway and the remote transaction program;
- additional factors such as configured network buffer size;
- the Oracle Net protocol adapters that were included during the gateway installation.

3.1.3 Network Attachment Requirements

The gateway requires any network attachment supported by either the SNA Server for your platform or the TCP/IP Networking Facility for TCP/IP communication.

However, if you are using solely the new TCP/IP support for IMS Connect feature, you will not need an SNA package. Your Windows operating system comes with TCP/IP installed; you will need to configure it.

3.1.4 CD-ROM Drive

A CD-ROM drive is required for installation of the software.

3.1.5 Disk Space Requirements

The gateway’s disk space requirements is a minimum of 300 MB.

3.2 Software Requirements

The system software configuration described in these requirements is supported by Oracle, provided that the underlying system software products are supported by their
respective vendors. Verify the latest support status with your system software vendors.

3.2.1 Operating System Requirements

Refer to the Oracle Database Installation Guide 10g Release 1 (10.1) for Microsoft Windows and to the certification matrix on the OracleMetaLink for the most up-to-date list of certified operating system version requirements to operate the gateway for your Windows Intel system. The OracleMetaLink Web site can be found at:

http://metalink.oracle.com

3.2.2 Communication Protocol Requirements

A Microsoft Host Integration Server 2000 is required, or IBM Communication Server V6.1.1 (or higher) for Windows. In this document, either of these communications servers will be referred to generically as SNA Server.

Note: If you choose to use TCP/IP support for IMS Connect as your communications protocol, then you will not need to use an SNA Server. Your operating system comes with a TCP/IP protocol automatically installed. If you choose to use the TCP/IP protocol, you will need to configure it to work properly with the gateway; those instructions are located in Chapter 10, “Gateway Configuration Using TCP/IP Communication Protocol”.

3.2.3 Oracle Server Requirements

The Microsoft Windows platform requires that the Oracle server which is to act as the Oracle Integrating Server be up to date with the latest patch set for supported Oracle database releases.

3.2.4 Oracle Networking Product Requirements

Oracle Net is automatically installed on the system where the Oracle Database 10g Server is installed and on the system where the gateway is installed. Refer to Chapter 5, “Configuring Your Oracle Network” in this guide for configuration information. Additionally, you may refer to the Oracle Net Services Administrator’s Guide.

3.2.5 IBM Mainframe Requirements

In addition to the other software requirements of the gateway and your particular platform, the following list outlines other requirements necessary on the IBM mainframe:

OLTP for SNA

The OLTP must support mapped APPC conversations. If the OLTP transaction programs to be executed through the gateway perform database updates, then the APPC verbs CONFIRM, CONFIRMED, and SEND_ERR must be supported by the OLTP. These verbs implement APPC sync level 1.

All resources controlled by an OLTP that can be updated by transaction programs invoked through the gateway must be defined as recoverable resources to the OLTP and host system if COMMIT/ROLLBACK capability is required for those resources.
For example, a VSAM file updated by a CICS transaction must be defined to CICS as a recoverable file for COMMIT/ROLLBACK to control the updates.

The gateway is compatible with all supported releases of SNA-enabled products such as CICS, IMS/TM, IDMS and z/OS.

**Important:** For a list of known restrictions, be sure to read the “Known Restrictions” section on page 2-4 before proceeding with installation of the gateway.

### OLTP for TCP/IP

IMS/TM: Release 7.1 or later is required, as well as any APARs (patches) listed in the IBM *IMS Connect Guide and Reference*.

IMS Connect: Release 1.2 or higher is required.

### 3.3 Documentation Requirements

Oracle recommends that you become familiar with the concepts and components of all products related to your gateway and that you read the following documentation on Oracle products other than your gateway:

- **PL/SQL User’s Guide and Reference**
- **Oracle Database Installation Guide for Microsoft Windows**
- **Oracle Database Administrator’s Reference**
- **Oracle Database Concepts**
- **Oracle Database Error Messages**
- **Oracle Net Services Administrator’s Guide**
- **Oracle Connectivity Guide**
- **Oracle Call Interface Programmer’s Guide**

In addition to your Oracle documentation, ensure that you have appropriate documentation for your platform, for your operating system and for your communications packages.

The following IBM documentation may be useful:

- **IMS Connect Guide and Reference**

The title of the IBM publication was accurate at the time of the publication of this guide. Titles and structure of these documents are subject to change. For other operating system, SNA communication package and TCP/IP package references, refer to the appropriate vendor documentation for your system.
The following topics in this chapter describe how to install and configure the Oracle Procedural Gateway for APPC:

- "Before You Begin" on page 4-2
- "Planning to Upgrade or Migrate the Gateway" on page 4-2
- "Performing Pre-Upgrade Procedures" on page 4-3
- "Performing Pre-Installation Procedures" on page 4-4
- "Installing the Gateway Software" on page 4-5
- "Installation Steps" on page 4-5
- "Deinstalling Your Oracle Procedural Gateway for APPC" on page 4-8
4.1 Before You Begin

Configuring an online transaction processor to allow access by the gateway requires actions on the OLTP and on certain components of the host operating system. Although no Oracle software is installed on the host system, access to, and some knowledge of the host system and the OLTP are required. Although this chapter includes some information about host system and OLTP installation steps, you must ensure that you have the applicable OLTP and host system documentation available.

Some of the configuration actions on the OLTP might require you to restart the OLTP. In preparation for this, have your host system programmer or DBA review the instructions for your OLTP to allow for any necessary preparations.

To install and configure the gateway with a single Oracle Integrating Server and a single OLTP, perform the procedures described in this chapter.

Note: If your gateway uses the SNA communication protocol, you will follow the instructions for installation and configuration in this chapter and in Chapter 5, "Configuring Your Oracle Network" and in Chapter 9, "Gateway Configuration Using SNA Communication Protocol".

If your gateway uses the TCP/IP communication protocol, you follow the instructions for installation and configuration in this chapter and in Chapter 5, "Configuring Your Oracle Network" and in Chapter 10, "Gateway Configuration Using TCP/IP Communication Protocol".

4.2 Planning to Upgrade or Migrate the Gateway

If you have an earlier version of the Oracle Procedural Gateway for APPC installed on your system, you may be upgrading or migrating to the current release. A gateway "upgrade" represents a minor software upgrade within a release, (for example, moving from Release 9.0 to Release 9.2.0); a gateway "migration" represents a significant change from one version number to another, (for example, migrating from Release 9.0 to 10.1).

This section is only for customers who have a previous release of Oracle Procedural Gateway for APPC. If you have a previous gateway installation, you will need to carry out specific tasks before you can install Release 10.1.0.2.0 of the Oracle Procedural Gateway for APPC.

After reading this section, you will need to read Chapter 12, "Migration From Existing Gateways" to determine the specific actions you must take to prepare for upgrade or migration of your gateway. If you are migrating to Oracle Procedural Gateway for APPC Release 10.1.0.2.0 from version 4.01 or earlier, you will find specific material related to migration of the gateway in Chapter 12, "Migration From Existing Gateways".

You may find it helpful to refer to Appendix D, "Summary of Changes in Previous Versions" for information on changes or corrected problems from earlier releases of the gateway.

If you are installing for the first time, begin with "Performing Pre-Installation Procedures" on page 4-4.
4.2.1 Performing Pre-Upgrade Procedures

Perform the following steps to prepare for upgrading the Oracle Procedural Gateway for APPC to current versions:

1. Make backups of altered PGA shipped files.
2. Remove or rename any old gateway directories.

4.2.2 Upgrade and Migration Considerations

Upgrade considerations are as follows:

- PGAU control files from Gateway Release 8 or 9 are upward compatible and you do not need to change them.
- After upgrade, the PG DD contains all of its earlier entries without modification. New PGAU control information has been added along with some columns to support new features, but no customer entries are altered by the upgrade.
- All TIPs from Oracle Procedural Gateway for APPC Release 4.0.1 or earlier must be recompiled, due to changes in the following:
  - PL/SQL compatibility
  - gateway server RPC interface
  - UTL_PG interface
- TCP/IP only: If you have existing TIPs that were generated previously on a gateway using the SNA communication protocol and you want to utilize the new TCP/IP feature, then the TIPs will have to be regenerated by PGAU with mandatory NLS_LANGUAGE and Side Profile Settings. Specify the appropriate ASCII character set in the DEFINE TRANSACTION command. This is due to the fact that the gateway assumes that the appropriate user exit in IMS Connect is being used, which would translate between the appropriate ASCII and EBCDIC character sets.

Caution: An upgraded PG Data Dictionary (PG DD) cannot be accessed by an earlier release of PGAU.

4.2.3 Restoration

If you want to restore a previous release of gateway, then you must restore the following components to their previous versions:

- PGAU
- PG DD
- gateway server
4.3 Performing Pre-Installation Procedures

Before you install the gateway, perform the following pre-installation procedures:

- Ensure that your system meets all of the hardware and software requirements specified in Chapter 3, “System Requirements”.

- A CD-ROM drive is required.
  
  The Oracle Procedural Gateway for APPC is currently shipped on CD-ROM media. The hardware required for the medium on which the gateway was ordered must be installed on your system.

- Ensure that your security requirements are met.
  
  Refer to Chapter 3, “System Requirements” for more information about the security requirements for connections and data access on your OLTP.

- Fill out the worksheet identifying unique parameter names needed to configure your system and your chosen communication protocol (either SNA or TCP/IP), which is located in Chapter E, “Configuration Worksheet”.

- Decide on a SID (system identifier) for your gateway. This SID is used in Section 9.7, “Configuring the Gateway” on page 9-13.
  
  The SID must be unique and must not be used by any other gateway or Oracle Integrating Server on the system.

- **SNA only**: Your SNA package must be installed and configured before you can proceed with installation of the gateway. Ensure that your system can communicate with the OLTP using the SNA Server appropriate for your platform.
  
  Refer to Chapter 6, "Configuring the SNA Communication Package on Windows" for more information about setting up and configuring SNA for Windows.

- **TCP/IP only**: Your TCP/IP package must be installed and configured before you can proceed with installation of the gateway. Refer to Chapter 7, "Configuring the TCP/IP Communications Package for IMS Connect" for more information about setting up and configuring TCP/IP for Windows.
  
  Ensure that your system can communicate with the OLTP using the TCP/IP communication package for your platform.

If you need general information about installing Oracle products and using the Oracle Universal Installer, then refer to the Oracle Database Installation Guide.

4.3.1 Gateway Installation Methods

You can install the gateway in either of the following ways:

1. On the same machine as the existing Oracle Integrating Server but in a different directory.
   
   All tasks for this type of installation or upgrade are discussed in this section.

2. On a system different from a local Oracle Integrating Server.

3. On the same machine as the Oracle Integrating Server, and in the same Oracle home directory. Note that in this case, the Oracle Integrating Server and the gateway must be at the same release level.
4.4 Installing the Gateway Software

For general information about installing Oracle products and how to use the Oracle Universal Installer, refer to the Oracle Database Installation Guide for Microsoft Windows and perform all necessary tasks there first.

If your server release is different than your gateway release, do not install the gateway in the same Oracle home directory as the Oracle Integrating Server. This is required to isolate the gateway from the Oracle Integrating Server upgrades that might cause incompatibilities if the gateway executables were relinked with later versions of the Oracle server libraries.

4.5 Installation Steps

If you wish to install the gateway in the same Oracle home as the Oracle Integrating Server, then the release number of both products must be the same.

4.5.1 Step 1: Logon to Windows System

Logon to your Windows system as a member of the Administrators group. If you are not currently a DBA user, then contact your system administrator to create a DBA login user ID. Refer to the Oracle Database Installation Guide for login information.

4.5.2 Step 2: Ensure Appropriate Amount of Disk Space

If you are installing the gateway for the first time, ensure that there is enough space on the disk where the gateway will reside, as specified in "Disk Space Requirements" on page 3-2.

4.5.3 Step 3: Stop All Oracle Services

Before beginning the gateway installation process, you must stop all Oracle services that are currently running. Follow these steps:

1. Click Start, then Settings, then Control Panel.
2. Choose Services. A list of all Windows services appears.
3. Select an Oracle service (those services begin with "Oracle").
4. Click Stop.
5. Continue to select and stop Oracle services until all active Oracle services are stopped.

4.5.4 Step 4: Insert the Gateway Product CD-ROM into Your CD-ROM Drive

Verify that the drive is assigned to the logical drive you selected and that you can access files on the CD-ROM.

**Note:** The installation steps that follow assume that the CD-ROM drive is mapped to the D: drive.

The CD_ROM package contains the Oracle Procedural Gateway for APPC and the Oracle Universal Installer.
4.5.5 Step 5: Start the Oracle Universal Installer

To start the Oracle Universal Installer, run `setup.exe`:

1. From the Start Menu, select **Run**.
2. Enter the path of the executable file name. For example: `D:\Disk1\setup.exe`

4.5.6 Step 6: Step Through the Oracle Universal Installer

**Caution:** Oracle Universal Installer automatically installs the Oracle-supplied version of the Java Runtime Environment (JRE). This version is required to run the Oracle Universal Installer and several Oracle assistants. Do not modify the JRE except by using a patch provided by Oracle Support Services. The Oracle Universal Installer also installs JDK 1.3.1.

Oracle Universal Installer is a menu-driven utility that guides you through installing the gateway by prompting you with action items. The action items and the sequence in which they appear depend on your platform.

The following section describes how use the Oracle Universal Installer to install the gateway on your platform.

4.5.6.1 Oracle Universal Installer on Windows Platforms

Use Table 4–1 as a guide to step through the Oracle Universal Installer. At each prompt from the Oracle Universal Installer, perform the actions described in the Response column of the table in order to install the gateway on your Windows platform.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
</tr>
</thead>
</table>
  b. Click "Next". |
| 2. Oracle Universal Installer: File Locations | Specify the source and destination directories and click "Next". |
| 3. Oracle Universal Installer: Installation Types | Select "Custom" and click "Next". |
  b. Select "Oracle Transparent Gateway 10.1.0.2.0", open up this row.  
  c. Select "Oracle Procedural Gateway for APPC 10.1.0.2.0". (Note that you may also choose to select other products to install besides the Oracle Procedural Gateway for APPC).  
  d. Click "Next". |
| 5. Oracle Universal Installer: Oracle Home Environment Variable Set | Click "Next". |
| 6. Oracle Universal Installer: Network Software | Specify your network package and click "Next". |
| 7. Oracle Universal Installer: Summary | Click "Install". |
Your gateway is now installed.

When the Oracle Universal Installer confirms that the installation is complete, verify that the installation procedure was successful. To do this, read the contents of the installation log file, which is located in the `C:\Program Files\Oracle\Inventory\logs` directory.

The default file name is `InstallActionsYYYY-MM-DD_HH-mm-SS-AM/PM.log`, where:

- **YYYY** is year;
- **MM** is month
- **DD** is day
- **HH** is hour
- **mm** is minute
- **SS** is seconds
- **AM/PM** is daytime or evening

Each of these variables in the log file name represents the date and time the product was installed.

**Attention:** Print the contents of the `%ORACLE_HOME%\pg4apc\doc\README.doc` file and read the entire document; it contains important information about the installation. After reading the `README.doc` file, proceed with configuration of the gateway.
4.6 Deinstalling Your Oracle Procedural Gateway for APPC

If you decide to deinstall the gateway, perform the following steps:

1. Drop the PG DD (packages and procedures) as follows:
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.
   b. From SQL*Plus, run the \pgdddel.sql script in the %ORACLE_HOME%\pg4appc\admin directory.

2. Insert the gateway product CD-ROM into your CD-ROM drive.

3. Start the Oracle Universal Installer by running the Oracle Universal Installer executable, setup.exe:
   1. From the Start menu, select Run.
   2. Enter the path of the executable file name. For example:
      D: \Disk1\setup.exe

4. Step through the Oracle Universal Installer. Use the prompts listed in Table 4–2, ”Steps to DeInstall the Gateway Using Oracle Universal Installer” as a guide for deinstallation, following the instructions in the Response column.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td>b. Click &quot;Next&quot;.</td>
</tr>
<tr>
<td>2. Oracle Universal Installer:</td>
<td>Click &quot;Installed Products&quot;.</td>
</tr>
<tr>
<td>File Locations</td>
<td></td>
</tr>
<tr>
<td>3. Inventory: click on the</td>
<td>You may either choose to deinstall all products that you</td>
</tr>
<tr>
<td>&quot;Contents” notebook</td>
<td>may have installed at the time of your original gateway</td>
</tr>
<tr>
<td></td>
<td>installation, or you may choose to deinstall only an instance of</td>
</tr>
<tr>
<td></td>
<td>Oracle Procedural Gateway for APPC.</td>
</tr>
<tr>
<td></td>
<td>■ To deinstall all products: Select the specified</td>
</tr>
<tr>
<td></td>
<td>ORACLE_HOME name.</td>
</tr>
<tr>
<td></td>
<td>■ Click &quot;Remove...&quot;</td>
</tr>
<tr>
<td></td>
<td>■ To deinstall only the instance of Oracle Procedural</td>
</tr>
<tr>
<td></td>
<td>Gateway for APPC: Expand the rows within the</td>
</tr>
<tr>
<td></td>
<td>ORACLE_HOME recursively until you arrive at the folder for &quot;Oracle</td>
</tr>
<tr>
<td></td>
<td>Procedural Gateway for APPC 10.1.0.2.0&quot;.</td>
</tr>
<tr>
<td></td>
<td>■ Click &quot;Remove...&quot;</td>
</tr>
<tr>
<td>4. Confirmation</td>
<td>Click &quot;Yes&quot;.</td>
</tr>
<tr>
<td>5. Inventory</td>
<td>Click &quot;Close&quot;.</td>
</tr>
<tr>
<td>6. Oracle Universal Installer:</td>
<td>Click &quot;Cancel&quot;.</td>
</tr>
<tr>
<td>File Locations</td>
<td></td>
</tr>
<tr>
<td>7. Exit</td>
<td>Click &quot;Yes&quot;.</td>
</tr>
</tbody>
</table>

5. The gateway is now deinstalled.

When the Oracle Universal Installer confirms that the deinstallation has ended, verify that the deinstallation procedure was successful. To do this, read the contents of the deinstallation log file, which is located in the C:\Program Files\Oracle\Inventory\logs directory.
The default file name is `InstallActionsYYYY-MM-DD_HH-mm-SS-AM/PM.log`, where:

- **YYYY** is year;
- **MM** is month
- **DD** is day
- **HH** is hour
- **mm** is minute
- **SS** is seconds
- **AM/PM** is daytime or evening

Each of these variables in the log file name represents the date and time the product was de-installed.

6. The only files that are removed are those that were copied to the `%ORACLE_HOME%` directory during the gateway installation. You must remove any other related files manually, including deleting `listener.ora` and `tnsnames.ora` entries relating to the gateway, dropping database link(s) and the PGAADMIN user ID and deleting the TIPs.
Now that you have installed the gateway, this chapter will instruct you in how to configure the network.

It contains the following section:

■ "Configuring the Oracle Network for the Gateway" on page 5-2
5.1 Configuring the Oracle Network for the Gateway

The instructions in this section will show you how to configure the network whether your gateway is utilizing the SNA or TCP/IP communication protocol.

The gateway must be defined to the TNS listener, and a service name must be defined for accessing the gateway. To do this, perform the following steps:

1. Add an entry for the gateway to the listener.ora file:

   - If you are using SNA:
     
     ```
     (SID_DESC=
       (SID_NAME=PGA)
       (ORACLE_HOME= C:\oracle\pga\10.0)
       (PROGRAM=pg4asrv)
     )
     where: C:\oracle\pga\10.0 is your gateway Oracle home and PGA is the gateway SID name.
     ```

   - Or, if you are using TCP/IP:
     
     ```
     (SID_DESC=
       (SID_NAME=PGA)
       (ORACLE_HOME= C:\oracle\pga\10.0)
       (PROGRAM=pg4t4ic)
     )
     where: C:\oracle\pga\10.0 is your gateway Oracle home and PGA is the gateway SID name.
     ```

2. Add a service name for the gateway to the tnsnames.ora file on the system where your Oracle Integrating Server is located. The service name is specified in the USING parameter of the database link defined for accessing the gateway from the Oracle Integrating Server. For example, if you are using the IPC protocol adapter and your gateway sid is PGA, add the following entry to tnsnames.ora:

   ```
   pgaipc=
     (DESCRIPTION =
       (ADDRESS = (PROTOCOL = ipc) (KEY=key))
       (CONNECT_DATA = (SID=PGA))
       (HS=)
     )
   ```

   In this example, key is the IPC key defined in the listener.ora file for the IPC protocol. You can use the IPC protocol only if the Oracle Integrating Server and the gateway are on the same system.

   If you are using the TCP/IP protocol adapter, and if your gateway sid is PGA, then add the following entry to tnsnames.ora:

   ```
   pgartcp=
     (DESCRIPTION =
       (ADDRESS = (PROTOCOL = TCP) (Host= gateway) (Port= port))
       (CONNECT_DATA = (SID=PGA))
       (HS=)
     )
   ```

   In this example, port is the TCP port defined in the listener.ora file for the TCP protocol, and gateway is the TCP/IP host name of the system where the gateway is located.
Note: Under the following circumstances:

- If your gateway and Oracle Integrating Server are not on the same machine,
- or, if the gateway and the Oracle Integrating Server are on the same machine but the Oracle Integrating Server Listener is different than the gateway listener,

then you must define the Oracle Integrating Server to PGAU by adding a service name to `tnsnames.ora` on the system where your gateway resides. For example:

```
ora_server =
  (DESCRIPTION=
    (ADDRESS =
      (PROTOCOL = TCP)
      (PORT = port)
      (HOST = ora_srv)
    )
    (CONNECT_DATA = (SID = ora_server))
  )
```

In this example:

- `port` is the TCP port defined in the Oracle Integrating Server `listener.ora` for the TCP protocol;
- `ora_srv` is the TCP/IP host name of the system where the Oracle Integrating Server resides; and
- `ora_server` is the SID of the Oracle Integrating Server.

Make sure to start your defined listener(s). Refer to the *Oracle Net Services Administrator’s Guide* for more information about configuring the network.

To see a sample listener.ora file refer to “Sample listener.ora file for a Gateway using SNA” and “Sample tnsnames.ora file for a Gateway using SNA” in Appendix A (if your communication protocol is SNA).

To see a sample listener.ora file refer to “Sample listener.ora file for a Gateway using TCP/IP” and “Sample tnsnames.ora file for a Gateway using TCP/IP” in Appendix B (if your communication protocol is TCP/IP).

Proceed With Configuring Your Communication Package for the Gateway

- If your communication protocol is SNA, you must now configure the SNA Server profiles for APPC connections.

  Proceed to Chapter 6, “Configuring the SNA Communication Package on Windows”

- If your communication protocol is TCP/IP, proceed to Chapter 7, “Configuring the TCP/IP Communications Package for IMS Connect”.
Configuring the SNA Communication Package on Windows

The Oracle Procedural Gateway for APPC uses the SNA Advanced Program to Program Communication (APPC/LU6.2) protocol to communicate with an OLTP.

APPC support on Microsoft Windows can be provided using two either of the following tools:

- the Microsoft Host Integration Server 2000, or
- the IBM Communications Server v6.1.1 (or higher).

**Note:** The term “SNA Server” is used in this document to generally refer to either the Microsoft Host Integration Server or the IBM Communications Server.

Read this chapter to learn how to configure your SNA Server on a Windows system in order to run the Oracle Procedural Gateway for APPC, using either a Microsoft Host Integration Server or IBM Communications Server.

This chapter contains the following sections:

- "Using SNA Security Validation" on page 6-2
- "Processing Inbound Connections" on page 6-2
- "Configuring Your Microsoft Host Integration Server" on page 6-2
- "Creating SNA Server Definitions on Microsoft Host Integration Server" on page 6-5
- "Configuring an IBM Communications Server" on page 6-15
- "Creating IBM Communications Server Definitions for the Gateway" on page 6-16
- "Testing the Connection" on page 6-18
- "Resume Configuration of the Gateway" on page 6-19
6.1 Using SNA Security Validation

When an RPC request to start a remote transaction program is received by the gateway, the gateway attempts to start an APPC conversation with the OLTP. Before the conversation can begin, a session must start between the Windows Logical Unit (LU) and the OLTP LU.

SNA and its various access method implementations (including SNA Server and VTAM) provide security validation at session initiation time, allowing each LU to authenticate its partner. This validation is carried out entirely by network software before the gateway and OLTP application programs begin their conversation and process conversation-level security data. If session-level security is used, then correct password information must be established in the Windows SNA Server definitions and in similar parameter structures in the OLTP to be accessed. Refer to the appropriate communications software product documentation for detailed information about this subject.

6.2 Processing Inbound Connections

Many OLTPs provide options for manipulating the security conduct of an inbound (client) APPC session request. Refer to the appropriate OLTP documentation for detailed information about this topic.

Note that for CICS, one security option is not supported by the gateway:

■ ATTACHSEC=PERSISTENT, specified on the CICS CONNECTION definition, requires capability that is not yet available in the gateway.

However, ATTACHSEC=LOCAL, ATTACHSEC=IDENTIFY, ATTACHSEC=VERIFY, and ATTACHSEC=MIXIDPE are fully supported by the gateway.

6.3 Configuring Your Microsoft Host Integration Server

The following sections discuss general information about the SNA Server and how to configure a Microsoft Host Integration Server.

---

**Note:** If you are using the IBM Communication Server to configure your Windows system for the gateway, then proceed to Section 6.5, “Configuring an IBM Communications Server”.

---

6.3.1 Independent Versus Dependent LUs

Oracle recommends independent LUs for the Oracle Procedural Gateway for APPC because they support multiple parallel sessions or conversations. This means that multiple Oracle client applications can be active simultaneously with the same OLTP through the independent LU.

Dependent LUs support only a single active session. The CP (Control Point for the Node, which is SNA Server for Windows in this case) queues additional conversation requests from the gateway server behind an already active conversation. In other words, conversations are single-threaded for dependent LUs.

If a dependent LU is correctly defined, then no alterations to the Oracle Procedural Gateway for APPC configuration are needed, nor should any changes be needed to the host transaction or how the OLTP is started.
The operational impact of dependent LUs is that the first client application can initiate a conversation through the Procedural Gateway with the OLTP. While that transaction is active (which could be seconds to minutes to hours, depending on how the client application and transaction are designed), any other client application initiating a conversation with the same OLTP instance appears to hang as it waits behind the previous conversation.

If a production application really uses only a single conversation or transaction at any one time, then there should be no impact.

However, additional concurrent conversations or transactions might be required for testing or for other application development. Each requires that additional dependent LUs be defined on the remote host, plus additional SNA Server configuration entries, which define the additional dependent LUs on the Windows system. The TIP that initiates the conversation must specify the different Partner LU through a different side information profile or by overriding the LU name. Refer to "PGAU DEFINE TRANSACTION" SIDEPROFILE and LUNAME parameters in Chapter 2, "Procedural Gateway Administration Utility," in the Oracle Procedural Gateway for APPC User’s Guide.

### 6.3.2 Location of Sample SNA Server Definitions

The `%ORACLE_HOME%\pg4appc\sna` subdirectory contains a sample set of gateway SNA Server definitions created with the `SNACFG` command. The `snacfg.ctl` file contains sample definitions for SNA Server.

Before building the SNA Server definitions, examine the `snacfg.ctl` file to determine the definitions needed, their contents, and their inter-relationships. The file format is text-oriented and each field of each definition is clearly labelled. You can print a copy of the file to use while working with your definitions in a Microsoft Host Integration Server (formerly SNA Server Manager) session.

### 6.3.3 SNA Server Definition Types

Several types of SNA Server definitions are relevant to gateway APPC/LU6.2 operation. Each definition can be created and edited using a corresponding Microsoft Host Integration Server (formerly SNA Server Manager) menu.

The definitions relevant to the gateway are presented here in hierarchical order. Those definition types that are lowest in the hierarchy are discussed first. This matches the logical sequence in which to create the definitions.

Refer to the Windows SNA Server online documentation for a complete discussion of SNA Server definitions. This section provides an overview of SNA Server definitions in relation to the Oracle Procedural Gateway for APPC.

### 6.3.4 Methods of Creating SNA Server Definitions for the Gateway

SNA Server definitions can be created and modified in two ways:

- You can create the definitions using menus in the Microsoft Host Integration Server (formerly SNA Server Manager).

Using the Microsoft Host Integration Server is the recommended method for creating the definitions. You should be able to accept most of the defaults. The default values assigned to many of the fields in a new set of definitions are acceptable to the gateway.
Step through the tasks for creating SNA Server definitions in Section 6.4, "Creating SNA Server Definitions on Microsoft Host Integration Server" on page 6-5.

Alternately, you can install the definitions directly on your system using the `SNACFG` command.

For information on using the `SNACFG` command, refer to your vendor documentation.

If you use the `SNACFG` command method you must use Microsoft Host Integration Server (formerly SNA Server Manager) to review and modify the installed definitions. Because of configuration and naming differences, it is unlikely they will work without modification.

Maintenance of SNA definitions is normally done by a user with Administrator authority. The following information is intended for the person creating SNA definitions for the gateway. You should have some knowledge of SNA before reading the following sections.
6.4 Creating SNA Server Definitions on Microsoft Host Integration Server

This section describes the process of creating your SNA definitions in the Microsoft Host Integration Server (formerly called the SNA Server Manager). All of the tasks described in this section are performed from within the Microsoft Host Integration Server. Note that the graphical interface you see on your screen when you use this tool will actually carry the name of the Microsoft Host Integration Server.

6.4.1 Server Selection

Select the appropriate folder to ensure that definitions created are for that server. When SNA Server Manager is started, a dialog box appears.

Select the "Servers" folder under your local system (in this example ITDEV-NT17) and select the local SNA Server. From a list of services for that server, select the SNA Service. (Refer to Figure 6–1).

*Figure 6–1  SNA Server Manager Window - Select SNA Service*
6.4.2 Link Service Definition

You must install and configure a link service for SNA Server to use the network adapter installed in your workstation, as follows:

1. From the Insert menu, select Link Service.

2. From the Insert Link Service dialog box, select the Link Service you want to use from the selection list and click the [Add] button. In this example, the DLC 802.2 Link Service is selected. (Refer to Figure 6–2).

Figure 6–2 Insert Link Service Dialog Box

Now the Link Service Properties dialog box is displayed. Note that the contents of this dialog vary depending on which Link Service was selected. In this example, the DLC 802.2 Link Service Properties dialog is used.

Select the appropriate network adapter from the Adapter drop-down menu and click [OK]. From the Insert Link Service dialog box, click the [Finish] button. The system now updates your network bindings. (Refer to Figure 6–3).

Figure 6–3 Link Service Properties Box
6.4.3 Connection Definition

You must create a connection definition to define the devices which SNA Server uses to perform SNA communication. From the Insert menu, select Connection. The Connection Properties dialog box appears.

Select the General tab. Enter a Connection Name. This is the name used by SNA Server to name the connection. This example names the connection TOKEN1. From the Link Service drop-down menu, select a link service for the connection. All other settings can be left set to their default values. (Refer to Figure 6–4).

Figure 6–4 Connection Properties Box - Enter Connection Name and Link Service

![Connection Properties Box - Enter Connection Name and Link Service](image)

Select the Address tab in the Connection Properties box. Enter the Remote Network Address and the Remote SAP address. (Refer to Figure 6–5).

Figure 6–5 Enter Remote Address

![Enter Remote Address](image)
Now select the System Identification tab. Under Local Node Name, enter the Network Name, Control Point Name and Local Node ID.

Under Remote Node Name, enter the Network Name, Control Point Name, and optionally, the Remote Node ID. The XID Type should be set to Format 3. (Refer to Figure 6–6).

**Figure 6–6  Set System Identification**

Next, select the DLC tab in the Connection Properties box. In this example, the 802.2 DLC (Token Ring) is being used. For the 802.2 DLC, all of the defaults are usually acceptable. If you need to change any values, do so now.

Now all of the connection properties are set. Click the [OK] button to continue. (Refer to Figure 6–7).

**Figure 6–7  Select DLC**
6.4.4 Local LU Definition

You must create a local LU definition. The local LU definition describes the SNA LU through which the gateway communicates with OLTP systems.

From the Insert menu, select Local APPC LU. The local LU Properties dialog box appears.

Select the General tab. Enter the LU alias, Network Name and LU Name. Be sure the APPC Syncpoint Support box is not checked. (Refer to Figure 6–8).

Figure 6–8 Select Local APPC LU Properties- Enter General LU Properties

Select the Advanced tab of the Local APPC LU Properties box. Check the "Member of Default Outgoing Local APPC LU Pool" box. Set the LU 6.2 Type to "Independent" to allow parallel sessions. (Refer to Figure 6–9).

Now the Local LU properties are all set. Click [OK] to continue.

Figure 6–9 Select Local APPC LU Properties Advanced Tab
6.4.5 Mode Definition

This definition describes an SNA mode entry to be used when establishing sessions between LUs. The mode defined here must match a mode defined on the target system.

From the Insert menu, select APPC Mode Definition. The APPC Mode Properties dialog box appears.

Select the General tab. Enter the Mode Name. The mode name that you specify must be defined to the OLTP communications software. Choose the mode name in addition to other mode parameters after consulting the person responsible for configuring the OLTP communications software. (Refer to Figure 6–10).

Figure 6–10 Open APPC Mode Properties Box - Enter Mode Name
Next, select the Limits tab. Enter the Parallel Session Limit, Minimum Contention Winner Limit, Partner Min Contention Winner Limit, and Automatic Activation Limit.

The Parallel Session limit determines the maximum number of concurrent conversations allowed between the gateway instance and the OLTP. This equates to the maximum number of concurrently active remote transaction program invocations through the gateway instance. (Refer to Figure 6–11).

Figure 6–11  Select Mode Properties Limits Tab

Now, select the Characteristics tab. Enter the Pacing Send Count, Pacing Receive Count, Max Send RU Size, and Max Receive RU size. For optimal performance, check the High Priority Mode box.

The pacing and RU size parameters are performance-related and should be tuned to suit your application. For most installations, the values set in the example are sufficient. (Refer to Figure 6–12).

After you finish entering the values called for in this box, all of the APPC mode properties will be set. Click the [OK] button at the bottom of the box to continue.

Figure 6–12  Set Mode Properties Characteristics
6.4.6 Remote LU Definition

This definition describes the SNA LU of the OLTP system with which the gateway communicates. You must create a remote LU definition for the remote OLTP system. Determine the link with which to associate the LU (in the example, it is \texttt{TOKEN1}). From the Insert menu, select APPC Remote LU. The Remote APPC LU Properties dialog box appears.

Select the General tab. Use the Connection drop-down menu to select the connection used to access this LU. Enter the LU Alias, Network Name, LU Name, and Uninterpreted LU Name. You should contact the person responsible for your SNA network to determine the correct LU and network names. Note that you can use the LU Alias to define a name known only to SNA Server, and that name can remain the same even if the remote LU name changes. This helps to reduce the amount of maintenance required when network changes occur. (Refer to Figure 6–13).

\textit{Figure 6–13  Open Remote APPC LU Properties Box - Enter Remote LU Names}
Now select the Options tab. Check the Supports Parallel Sessions box. Use the Implicit Incoming Mode drop-down menu to select the mode. Set any security options you need. (Refer to Figure 6–14).

Once you have filled in the appropriate values in the Remote APPC LU Properties box, the APPC LU properties will be set. Click [OK] to continue.

**Figure 6–14 Select LU Properties Options**

6.4.7 CPI-C Symbolic Destination Name

When the Local and Remote Partner definitions and Mode definitions have been created, you can create CPI-C Symbolic Destination Names, also called Side Information. The Side Information is used to identify target OLTP systems to be accessed through the gateway. From the Insert menu, select "APPC CPIC Symbolic Name". The CPIC Name Properties dialog box appears.

Select the General tab. Enter a Name for the Side Information. From the Mode Name pull-down menu, select the appropriate mode. (Refer to Figure 6–15).

**Figure 6–15 CPI-C Name Properties Box - Enter Side Information Name and Mode**

Now select the Partner Information tab. Select Application TP and enter the TP name. If you plan to define one CPI-C Symbolic Destination Name for accessing multiple transaction programs at an OLTP, you can enter a dummy TP Name at this time. The TP Name is overridden by the gateway at execution time.

Enter the Partner LU Name alias. (refer to Figure 6–16).

Click the [OK] button to save the Side Information.

**Figure 6–16  Select CPI-C Partner Information**

Configuration of the Microsoft Host Integration Server is now complete. Proceed to "Testing the Connection" on page 6-18.
6.5 Configuring an IBM Communications Server

If you are using IBM Communications Server as your SNA Server, read the following sections to learn how to configure it to communicate with the Oracle Procedural Gateway for APPC.

6.5.1 Independent Versus Dependent LUs

Oracle recommends independent LUs for the Oracle Procedural Gateway for APPC because they support multiple parallel sessions or conversations. This means that multiple Oracle client applications can be active simultaneously with the same OLTP through the independent LU.

Dependent LUs support only a single active session. The CP (Control Point for the node, which is IBM Communications Server, in this case) queues additional conversation requests from the gateway server behind an already active conversation. In other words, conversations are single-threaded for dependent LUs.

If a gateway LU is correctly defined, then no alterations to the Oracle Procedural Gateway for APPC configuration are needed, nor should any changes be needed to the gateway server.

The operational impact of dependent LUs is that the first client application can initiate a conversation through the Procedural Gateway with the gateway server. While that transaction is active (which could be seconds to minutes to hours, depending on how the client application and transaction are designed), any other client application initiating a session with the same gateway server appears to hang as it waits behind the previous session.

If a production application really uses only a single conversation at any one time, then there should be no impact.

However, additional concurrent conversations might be required for testing or for other application development. Each requires that additional dependent LUs be defined on the remote host, plus additional IBM Communication Server configuration entries, which define the additional dependent LUs on the host Windows system.

Additional Side Information Profiles should be defined to use the new dependent LUs. New gateway instances should be created and configured to use these new Side Information Profiles.


6.5.2 Definition Types

Several types of IBM Communications Server definitions are relevant to gateway APPC/LU6.2 operation. Each definition can be created and edited using a corresponding SNA Node Configuration menu.

The definitions relevant to the gateway are presented here in hierarchical order. Those definition types that are lowest in the hierarchy are discussed first. This matches the logical sequence in which to create the definitions.

Refer to the IBM Communications Server online documentation for a complete discussion of IBM Communications Server definitions. This section provides an overview of IBM Communications Server definitions in relation to the Oracle Procedural Gateway for APPC.
6.6 Creating IBM Communications Server Definitions for the Gateway

IBM Communications Server definitions are created using the SNA Node Configuration tool, while the actual operation of the server is done using the SNA Node Operations tool, both of which are provided with IBM Communications Server.

Maintenance of SNA definitions is normally done by a user with Administrator privileges.

The following sections describe the process of creating your SNA definitions for IBM Communications Server using the SNA Node Configuration tool. All of the tasks described in this sections are performed within SNA Node Configuration.

6.6.1 Creating the Configuration

SNA Node Configuration will first ask you if you are creating a new configuration or loading an existing configuration. These tasks are based on the assumption that a new configuration is being created.

SNA Node Configuration will next prompt you for a configuration scenario.

6.6.2 Creating the Node

Each SNA Server must have a Control Point defined. This is typically called the Node definition. To define the node:

1. Click on Node.
2. Click the [Create] button.
3. In the Define the Node dialog box, select the Basic tab. Enter the Control Point, Local Node ID and Node Type information.
   You can select Advanced tab options, depending upon your SNA network configuration.
4. Click [OK].

6.6.3 Creating Devices

Configure Communication Devices next. Follow these instructions:

1. Click on Devices.
2. Click the [Create] button.

6.6.4 Choosing the Device Type

Select the type of device to use for communication. The LAN type is typical for either Ethernet or Token Ring attached network devices.

6.6.5 Configuring a LAN Device

Configure a LAN device next. Follow these instructions:

1. Select the Basic tab. Choose the Adapter to use and the Local SAP.
   The other tabs provide options on network tuning parameters.
2. Click [OK].
6.6.6 Creating Peer Connections
Configure Peer Connections next. Follow these instructions:
1. Click on Peer Connections.
2. Click the [Create] button.

6.6.7 Defining the Link Station
Define the Link Station next. Follow these instructions:
1. In the Basic tab, enter a Link Station name for this connection.
2. Choose the device for the connection.
3. Enter the Destination address and Remote SAP.

6.6.8 Defining the Adjacent Node
Define the Adjacent Node next. Follow these instructions:
1. Select the Adjacent Node tab.
2. Enter the Adjacent CP name of the remote system and pick its CP type. You may have to choose a different transmission group (TG) than the default. Consult your SNA network administrator for details.
   Other tabs provide options on tuning and reactivation.
3. Click [OK].

6.6.9 Creating Local LUs
Create Local LUs for this node next. Follow these instructions:
1. Click on Local LU 6.2 LUs.
2. Click the [Create] button.

6.6.10 Defining Local LUs
Define Local LUs next. Follow these instructions:
1. In the Basic tab, enter the name of the Local LU, and, optionally, an alias. The name must match the Local LU definition of the remote host for this Node.
   You can examine the other tab for synchronization support and for LU session limits.
2. Click [OK].

6.6.11 Creating Partner LUs
Create remote Partner LUs next. Follow these instructions:
1. Click on Partner LU 6.2 LUs.
2. Click the [Create] button.
### 6.6.12 Defining Partner LUs

Define Partner LUs next. Follow these instructions:

1. In the Basic tab, enter the name of the Remote or Partner LU, and, optionally, an alias.
2. Choose the Fully Qualified CP from the Existing list.
   
   You can examine the other tab for logical record limits and security support.
3. Click [OK].

### 6.6.13 Creating the CPI-C Side Information Profile

Next, define the CPI-C profile that will be used to create the gateway. Follow these instructions:

1. Click on the CPI-C Side Information Definitions.
2. Click the [Create] button.

### 6.7 Testing the Connection

Before proceeding with the gateway configuration tasks, ensure that your connection is working. You can do this using the Microsoft Host Integration Server (SNA Server Manager).

*Figure 6–17 shows the relationship between SNA Server definitions and the VTAM definitions on the host.*
6.8 Resume Configuration of the Gateway

When you have finished configuring the SNA Server for your Windows system, proceed to Chapter 8, "Configuring the OLTP" to continue configuring the network.
Read this chapter if your gateway uses the TCP/IP communication protocol. It describes how to configure the TCP/IP for IMS Connect feature for Microsoft Windows. TCP/IP is a communication protocol that is already a part of your operating system. No third-party protocol software is required. This chapter contains the following section:

- "Configuring TCP/IP for IMS Connect on Windows Platforms" on page 7-2
7.1 Configuring TCP/IP for IMS Connect on Windows Platforms

The configuration process requires you to enter parameters that are unique to your system in order to properly configure TCP/IP. Ask your network administrator to provide you with a list of the installation parameters you will need to complete the configuration process.

Basic configuration consists of assigning a host name, an IP address and a Network Mask to a given network interface. This basic configuration should have been completed already by your systems administrator. If not, contact your systems administrator to have this configuration completed before you continue.

Additional configuration consists of defining a Name Server IP Address or creating entries in the Hosts file on the local machine. Name Servers translate host names into IP addresses when queried on a particular host name. The Hosts file provides this same functionality, but in a non-network participating manner.

For local configuration, (i.e., if the gateway is on the same machine), it may be desirable to use the loop-back address. The IP address is 127.0.0.1 and is typically given the local name ("localhost" or "loopback") in the Hosts file. Using the loop-back address reduces the amount of network overhead by handling the traffic internally without actually "talking" to the network.

Note: The Oracle Procedural Gateway for APPC using TCP/IP support for IMS Connect has specific initialization file parameters. These parameters are located in %ORACLE_HOME%\pg4appc\admin\initsid.ora. For information on these parameters, refer to "Gateway Initialization Parameter File Using TCP/IP" on page B-2.

For additional information about configuring TCP/IP for a particular host operating system, refer to the appropriate platform and operating system installation and configuration guides.

When you have finished configuring TCP/IP for IMS Connect for the gateway, proceed to Chapter 8, "Configuring the OLTP" to complete and verify the configuration processes.
The following sections detail how to configure the OLTP.

- **If your communications protocol is SNA**: proceed to Section 8.1, "Configuring the OLTP for Your SNA Environment" on page 8-2.

- **If your communications protocol is TCP/IP**: proceed to Section 8.2, "Configuring the OLTP for Your TCP/IP Environment" on page 8-8.

**Note:** On a gateway using TCP/IP support for IMS Connect, you must specify EDIT=ULC in the IMS TRANSACT macro if you need input case sensitivity. When using SNA support, you need not specify EDIT=ULC in the IMS TRANSACT macro.
8.1 Configuring the OLTP for Your SNA Environment

The steps for configuring your OLTP to communicate with the Oracle Procedural Gateway for APPC vary, depending on which OLTP you are using and on which platform the OLTP is running. CICS Transaction Server for z/OS, IMS/TM, APPC/MVS, IDMS-DC and z/OS are the currently supported OLTPs. Choose the instructions appropriate to your OLTP from the following sections:

- "Configuring CICS Transaction Server for z/OS" on page 8-2
- "Configuring IDMS-DC" on page 8-4
- "Configuring IMS/TM" on page 8-6
- "Configuring APPC/MVS" on page 8-7

Note: You need only perform the configuration steps for an OLTP if this is a first-time configuration for that OLTP.

Configuring CICS Transaction Server for z/OS

If your OLTP is CICS Transaction Server for z/OS, then perform the following steps to configure it for communication with the gateway:

1. Configure MVS VTAM for the SNA Server that will make the APPC connection to your system. At least one independent LU must be available to gateway.

2. Check the VTAM logmode table used by the CICS Transaction Server for z/OS. (The table name is specified in the MODETAB parameter in the VTAM APPL definition for CICS.) Ensure that an entry exists for APPC sessions with parallel session and sync-level support.

   The `oraplu62.asm` file in the `%ORACLE_HOME%/pg4appc/sna` directory contains a sample mode entry, including comments that indicate the required values in the mode entry.

3. Using your file transfer facility, transfer the following files from the `%ORACLE_HOME%/pg4appc/demo/CICS` directory to the z/OS system on which you run CICS Transaction Server for z/OS:
   - `dfhcsdup.jcl` - JCL to run the CICS DFHCS DUP utility
   - `pgaflip.asm` - assembler source for the CICS FLIP transaction
   - `pgaflip.jcl` - JCL to assemble and linkedit the CICS FLIP transaction

4. Using the comments in the `dfhcsdup.jcl` file, tailor the JCL and input statements to match your system setup, and submit it for batch execution. Performing this step updates your Transaction Server for z/OS system definitions.

5. Using the instructions in the `pgaflip.jcl` file comments, tailor the JCL to match your system setup, and submit it for batch execution. Performing this step assembles and linkeditsthe `pgaflip.asm` file into a load module library accessible to your Transaction Server for z/OS through the DFHRPL DD statement in the CICS startup procedure.

6. Log on to your CICS Transaction Server for z/OS and enter the following transaction:

   CEDA INSTALL GROUP (ORAPGA)
This transaction installs the CICS connection and session definitions for APPC communication with the gateway on Windows. It also installs definitions for the sample CICS programs and transactions provided with the gateway.

Your CICS Transaction Server for z/OS configuration is now complete.
Configuring IDMS-DC

If your OLTP is IDMS-DC, perform the following steps to configure IDMS-DC and z/OS for communication with the gateway:

1. Configure MVS VTAM for the communication interface APPC connection to Windows. At least one independent LU must be available for use by the gateway.

2. If your IDMS-DC system does not have APPC support, then set up a separate MVS VTAM APPL definition for use by the IDMS-DC LU6.2 interface. IDMS-DC cannot use the same VTAM APPL for both VTAM terminal and VTAM APPC support.

   For additional information, refer to vendor documentation.

3. Check the VTAM logmode table used by IDMS-DC. (The table name is specified in the MODETAB parameter in the VTAM APPL definition for IDMS-DC.) Ensure that an entry exists for APPC sessions with parallel session and sync level support. The `orapl62.asm` file in the `%ORACLE_HOME%\pgappc\sna` directory contains a sample mode entry, including comments that indicate the required values in the mode entry.

4. Modify the Mode Profile to be used for your IDMS-DC connections.

   To bypass a bug in IDMS-DC, set the "Auto ACTIVATIONS limit" field to the same value as the "maximum number of SESSIONS" field. Without this setting, IDMS-DC rejects the first data packet received from Windows on each conversation, making it impossible for the gateway to communicate with an IDMS-DC transaction.

5. Using `CA-Idms System Generation` as a guide, perform the following IDMS tasks:

   a. Enable the IDMS-DC multiple session service manager, RHDCCNOS.

   b. Define a VTAM line for APPC use, if one is not already defined.

   c. Define PTERMs and LTERMs for communications with the Windows independent LU, as defined to VTAM on z/OS.

      Set up two PTERM/LTERM definitions to use the SNASVCMG mode entry for communications between the SNA Service Managers on MVS and Windows. Set up one of these definitions as a contention winner and set up the other one as a contention loser. Set up additional PTERM/LTERM definitions to use the mode entry defined in the SNA Server. Profile DEFINE/MODE entry for use by the gateway sessions. One PTERM/LTERM definition is required for each concurrent session with the gateway. Set up these definitions with contention off.

      In the `%ORACLE_HOME%\pgappc\demo\IDMS` directory, the `appcdef.doc` file provides sample IDMS-DC definitions for a VTAM line with PTERMs and LTERMs.

   d. Define the IVP and sample programs and transactions to IDMS-DC.

      In the `%ORACLE_HOME%\pgappc\demo\IDMS` directory, the `trandef.doc` file provides sample IDMS-DC definitions for the IVP and sample programs and transactions. These definitions should not be modified.
6. Using your file transfer facility, transfer the following files from the %ORACLE_HOME%\pgappc\demo\IDMS directory to the z/OS system on which you run IDMS-DC:
   - pgaflip.asm - the assembler source for the IDMS-DC FLIP program
   - pgaflip.jcl - JCL to assemble and linkedit the IDMS-DC FLIP program

7. Using the comments in the pgaflip.jcl file, tailor the JCL to match your system setup and submit it for batch execution. Performing this step assembles and linkedit the pgaflip.asm file into a load module library accessible to your IDMS-DC system through the CDMSLIB DD statement in the IDMS-DC startup procedure.

The IDMS-DC configuration is now complete.
Configuring IMS/TM

If your OLTP is IMS/TM, then perform the following steps to configure IMS/TM and z/OS for communication with the gateway:

1. Configure your IMS system for the APPC.

2. Configure MVS VTAM for the SNA APPC connection to Windows. At least one independent LU must be available for use by the gateway, unless you are using the IMS LU6.1 Adapter for LU6.2 applications. In this case, you must have one dependent LU defined for each concurrent session. For example, if you want to support 10 concurrent sessions, then you must have 10 dependent LUs defined.

3. Check the VTAM logmode table used by IMS/TM. The table name is specified by the MODETAB parameter in the VTAM APPL definition.

   For APPC/IMS, ensure that an entry exists for APPC sessions with sync-level support and parallel session support. The oralu62.asm and oraplu62.asm files in the %ORACLE_HOME%\pg4appc\sna directory contain sample mode entries for single session and parallel session support, respectively. The samples include comments that indicate the required values in the mode entries.

4. Using your file transfer facility, transfer the following files from the %ORACLE_HOME%\pg4appc\demo\IMS directory to the z/OS system on which you run IMS/TM:

   - pgaflip.asm is assembler source for IMS FLIP transaction;
   - pgaflip.jcl is JCL to assemble and linkedit IMS FLIP transaction;
   - imsgen.asm is IMS stage 1 gen definitions for the IMS FLIP transaction.

5. Add the statements in the imsgen.asm file to your IMS stage 1 gen and run your IMS stage 1 and stage 2 gens. Use the online change utility to enable the new transaction definition.

6. Using the comments in the pgaflip.jcl file, tailor the JCL to match your system setup and submit it for batch execution. This assembles and linkedits the pgaflip.asm file into a load module library that is accessible to your IMS/TM system and creates an PSB and an ACB for the FLIP transaction.

7. Perform the tasks necessary on your system to make the new transaction available to IMS/TM. Depending on your system setup, you might have to restart IMS. The IMS/TM configuration is now complete.
Configuring APPC/MVS

If your OLTP is APPC/MVS, then perform the following steps to configure APPC/MVS for communication with the gateway:

1. Configure MVS VTAM for the SNA APPC connection to Windows. At least one independent LU must be available for use by the gateway.

2. Check the VTAM logmode table used by APPC/MVS. (The table name is specified by the MODETAB parameter in the VTAM APPL definition for APPC/MVS.) Ensure that an entry exists for APPC sessions with sync level and parallel session support. The `oraplu62.asm` file in the `%ORACLE_HOME%\pg4appc\sna` directory contains a sample mode entry, including comments that indicate the required values in the mode entry.

3. Allocate a partitioned dataset (PDS) on your z/OS system where the sample files are placed. The PDS should be allocated with RECFM=FB, LRECL=80, and a BLKSIZE appropriate for the device type on which it resides. Approximately two tracks of 3390 disk space are required with one directory block. Oracle suggests naming this partitioned dataset (PDS) `ORAPGA.APPCMVS.SAMPLIB`.

4. Using your file transfer facility, transfer the following files from the `%ORACLE_HOME%\pg4appc\demo\MVS` directory to the z/OS PDS you allocated in the previous step, using the following specified member names:
   - `pgaflip.jcl` is JCL to add an APPC/MVS TP profile and to define the execution environment for the transaction. Store this file in your z/OS PDS as member PGAFLIPJ.
   - `pgaflip.rex` is the REXX source for the APPC/MVS PGAFLIP transaction. Store this file in your z/OS PDS as member PGAFLIP.

5. Using the comments in the `pgaflip.jcl` file, tailor the JCL to match your system setup and submit it for batch execution. Performing this step defines the APPC/MVS TP profile for the PGAFLIP transaction and stores it in the APPC/MVS profile dataset. Ensure that you change the dataset name in the JCL to match the name of the z/OS PDS allocated in Step 3.

The APPC/MVS configuration is now complete.

- Now that you have completed configuration of the network on a gateway using the SNA protocol, proceed to Chapter 9, "Gateway Configuration Using SNA Communication Protocol".
- If you wish to configure commit-confirm, instructions for this configuration can be found in Section 9.8, "Configuring Commit-Confirm".
8.2 Configuring the OLTP for Your TCP/IP Environment

These are the steps for configuring your OLTP to communicate with Oracle Procedural Gateway for APPC using TCP/IP for IMS Connect. IMS/TM, through IMS Connect, is the only supported OLTP for this release of the gateway.

Perform the following steps to configure IMS/TM and z/OS for communication with the gateway:

1. Configure your IMS system.
2. Configure IMS Connect
   For information on how to configure IMS Connect, refer to the IBM IMS Connect Guide and Reference.
3. Using your file transfer facility, transfer the following files from the %ORACLE_HOME%\pg4appc\demo\IMS directory to the z/OS system on which you run IMS/TM:
   - pgaflip.asm is assembler source for IMS FLIP transaction;
   - pgaflip.jcl is JCL to assemble and linkedit IMS FLIP transaction;
   - imsgen.asm is IMS stage 1 gen definitions for the IMS FLIP transaction.
4. Add the statements in the imsgen.asm file to your IMS stage 1 gen and run your IMS stage 1 and stage 2 gens. Use the online change utility to enable the new transaction definition.
5. Using the comments in the pgaflip.jcl file, tailor the JCL to match your system setup and submit it for batch execution. This assembles and link edits the pgaflip.asm file into a load module library that is accessible to your IMS/TM system and creates an PSB and an ACB for the FLIP transaction.
6. Perform the tasks necessary on your system to make the new transaction available to IMS/TM. Depending on your system setup, you might have to restart IMS.

The IMS/TM configuration is now complete.

At this point, proceed to Chapter 10, "Gateway Configuration Using TCP/IP Communication Protocol" to complete configuration of the gateway and its components.
This chapter outlines the steps needed to configure the Oracle Integrating Server for a gateway using the SNA protocol on your Microsoft Windows platform. It also shows you how to configure commit-confirm, should you choose to implement it.

This chapter also provides the steps necessary to verify installation and configuration of the gateway components, including optional commit-confirm. It contains the following sections:

- "Preparing to Configure a Gateway Installation/Upgrade" on page 9-2
- "Integrating Server Configuration: First-Time Gateway Installations" on page 9-5
- "Upgrading or Migrating the Oracle Server from Previous Gateways" on page 9-8
- "Configuring the Oracle Integrating Server for Gateways to Coexist" on page 9-10
- "Optional Configuration Steps to Permit Multiple Users" on page 9-10
- "Configuring the Gateway" on page 9-13
- "Configuring Commit-Confirm" on page 9-14
- "Verifying the Gateway Installation and OLTP Configuration" on page 9-16
- "Performing Post-installation Procedures" on page 9-22
Configuring the Oracle Procedural Gateway for APPC using SNA involves working with the following components:

- the Oracle Integrating Server
- your Microsoft Windows system
- your network
- the OLTP

### 9.1 Before You Begin

This chapter requires you to input parameters unique to your system in order to properly configure the gateway and SNA communications interface.

Refer to Appendix E, "Configuration Worksheet" for a worksheet listing the installation parameters you will need to know before you can complete the configuration process. Ask your network administrator to provide you with these unique parameter names before you begin.

### 9.2 Preparing to Configure a Gateway Installation/Upgrade

There are three ways to establish the gateway-Oracle Integrating Server relationship when you are installing or upgrading/migrating the gateway:

- **When the Oracle Integrating Server and the gateway are installed in the same ORACLE_HOME on the same machine**
- **When the Oracle Integrating Server and the gateway are installed on separate machines**
- **When the Oracle Integrating Server and the gateway are on the same machine but in different directories**

Depending upon the location of your gateway and your Oracle Integrating Server, you may need to transfer some of the gateway administrative files to the location where your Oracle Integrating Server is installed.

Follow the instructions appropriate to your combination of the gateway-Oracle Integrating Server locations listed below.

**When the Oracle Integrating Server and the gateway are installed in the same ORACLE_HOME on the same machine**

You do not need to transfer files. Proceed to "Integrating Server Configuration: First-Time Gateway Installations" on page 9-5.
When the Oracle Integrating Server and the gateway are installed on separate machines

1. Locate the gateway administrative files in the gateway
   %ORACLE_HOME%\pg4appc\admin directory. All files in this directory that
   have the suffix .sql, .pkh, and .pkb must be copied into a similarly-named
   directory in the Oracle Integrating Server’s Oracle home directory.

2. Now locate the gateway demo files and subdirectories in the gateway’s
   %ORACLE_HOME%\pg4appc\demo directory. Copy the pgavsn.sql and
   pgaecho.sql files into a similarly named directory in the Oracle Integrating Server.

3. Copy the other subdirectories and files related to your installed OLTP on your
   remote host. For example, if you have CICS as your only OLTP, then copy the
gateway %ORACLE_HOME%\pg4appc\demo\CICS files into a similarly
   named directory in the Oracle Integrating Server.

---

**Note:** Before transferring the files from the
%ORACLE_HOME%\pg4appc\demo directory, make sure that
you have generated your required TIPs. You need to transfer the
TIPs as well.

Refer to the Oracle Procedural Gateway for APPC User’s Guide for
information about generating TIPs using PGAU.

---

When the Oracle Integrating Server and the gateway are on the same
machine but in different directories

You must change your gateway’s Oracle home to the Oracle Integrating Server’s
Oracle home directory.

1. For example, if your gateway’s Oracle home is set as follows:
   C:\> echo %ORACLE_HOME%
   C:\oracle\pga\10.0

   and your server’s Oracle home is located in the ‘\oracle\pga\10.0’ directory,
   then you need to do the following:
   C:\> SET ORACLE_HOME=C:\oracle\pga\10.0

2. Now create the directories with the following commands:
   C:\> cd %ORACLE_HOME%
   C:\> mkdir pg4appc
   C:\> mkdir pg4appc\admin

3. Use whatever file transfer mechanism is available on your system to copy all of the
   .sql, .pkh, and .pkb files from the gateway Oracle home
   %ORACLE_HOME%\pg4appc\admin directory to the Oracle Integrating
   Server’s Oracle home %ORACLE_HOME%\pg4appc\admin directory.

4. You may also transfer the demo files from the gateway directory to the Oracle
   Integrating Server directory. Copy the files and directory recursively from the
   gateway Oracle home %ORACLE_HOME%\pg4appc\demo directory to the
   Oracle Integrating Server %ORACLE_HOME%\pg4appc\demo directory.
Preparing to Configure a Gateway Installation/Upgrade

For example:
C:\> cd %ORACLE_HOME%\pg4appc
C:\> mkdir\demo
C:\> cd demo
C:\> xcopy C:\oracle\pga\10.0\demo /E /I /Q

**Note:** Before transferring the files from the %ORACLE_HOME%\pg4appc\demo directory, make sure that you have generated your required TIPs. You need to transfer the TIPs as well.

Refer to the *Oracle Procedural Gateway for APPC User’s Guide* for information about generating TIPs using PGAU.

If this is a first-time installation, proceed with "Integrating Server Configuration: First-Time Gateway Installations" on page 9-5.

If this is an upgrade, proceed with "Upgrading or Migrating the Oracle Server from Previous Gateways" on page 9-8.

Following those steps, you may want to perform the Optional Configuration Steps to Permit Multiple Users, on page 9-10.
9.3 Integrating Server Configuration: First-Time Gateway Installations

Follow these steps to configure your Oracle Integrating Server if you have installed Oracle Procedural Gateway for APPC for the first time:

1. Ensure that the UTL_RAW PL/SQL package has been installed on your Oracle Integrating Server. All PGAU-generated TIP specifications use UTL_RAW, which provides routines for manipulating raw data.
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   b. From SQL*Plus, enter the following command:

   
   SQL> DESCRIBE UTL_RAW

   The DESCRIBE statement produces output on your screen. If you browse through the output, you should see some functions, including a compare function. If you do not see this output, then continue the UTL_RAW installation by performing step d below.

   If the DESCRIBE statement indicates success, then your Oracle Integrating Server has UTL_RAW installed and you can proceed to Step 2.
   c. Use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   d. From SQL*Plus, run the utlraw.sql and prvtrawb.plb scripts in the Oracle Integrating Server’s %ORACLE_HOME%/rdbms/admin directory, in the following order:

   
   C:\> cd %ORACLE_HOME%/rdbms/admin
   SQL> @utlraw.sql
   SQL> @prvtrawb.plb

2. Ensure that the DBMS_OUTPUT standard PL/SQL package is enabled on your Oracle Integrating Server. The sample programs and installation verification programs on the distribution media use this standard package.
   a. If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   b. From SQL*Plus, enter the following command:

   
   SQL> DESCRIBE DBMS_OUTPUT

   The DESCRIBE statement produces output on your screen. If you browse through that output, you should see some functions, including a put_line function.

   If you do not see this output, then you must create the DBMS_OUTPUT package. Refer to the Oracle Database Application Developer’s Guide for more information about creating the DBMS_OUTPUT package. After successful installation of the DBMS_OUTPUT package, issue the DESCRIBE statement.

   If the DESCRIBE statement indicates success, then your Oracle Integrating Server has DBMS_OUTPUT created, and you can proceed to Step 3.
3. Install the UTL_PG PL/SQL package. All PGAU-generated TIP specifications use UTL_PG, which provides routines for performing numeric conversions to and from raw data.
   a. If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   b. From SQL*Plus, run the utlpq.sql and prvtpgb.plb scripts in the Oracle Integrating Server’s %ORACLE_HOME%\rdbms\admin directory, in the following order:
      C:\> cd %ORACLE_HOME%\rdbms\admin
      SQL> @utlpq.sql
      SQL> @prvtpgb.plb

4. Install the Heterogeneous Services (HS) catalogs.
   a. If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   b. Enter the following command:
      SQL> DESCRIBE HS_FDS_CLASS
      The DESCRIBE statement produces output on your screen. If the DESCRIBE statement indicates success, then heterogeneous services catalogs have been created on your Oracle Integrating Server and you can proceed to Step 5.
   c. If it is necessary to create the Heterogeneous Services catalog, enter the following command:
      C:\> cd %ORACLE_HOME%\rdbms\admin
      SQL> caths.sql

5. Create a public database link to access Oracle Procedural Gateway for APPC:
   Use SQL*Plus to connect to the Oracle Integrating Server as user SYSTEM. You can use the following SQL*Plus sample whether the Oracle Integrating Server and the gateway are on the same system or on different systems. In the following sample, pgasrv is the tns_name_entry that will be assigned to the gateway when you modify the tnsnames.ora file later in this chapter.
      SQL> CREATE PUBLIC DATABASE LINK PGA USING 'PGASRV'

6. Create the gateway administrator user PGAADMIN and install the PG DD.
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user SYSTEM.
   b. From SQL*Plus, run the pgacr8au.sql script in the %ORACLE_HOME%\pg4appc\admin directory. This script creates the PGAADMIN user ID.
      The initial password defined for PGAADMIN is PGAADMIN. Use the ALTER USER command to change the password. For further information about password issues, refer to the Oracle Database SQL Reference.
      C:\> cd %ORACLE_HOME%\pg4appc\admin
      SQL> @pgacr8au.sql
c. Use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.

d. From SQL*Plus, run the `pgddcr8.sql` script in the
   `%ORACLE_HOME%\pg4appc\admin` directory. This script installs the
   PG DD.

   C:\> cd %ORACLE_HOME%\pg4appc\admin
   SQL> @pgddcr8.sql

 e. From SQL*Plus, connect to the Oracle Integrating Server as user SYS.

 f. Grant execution privileges on DBMS_PIPE to PGAADMIN:

   SQL> GRANT EXECUTE ON DBMS_PIPE TO PGAADMIN

7. Install the TIP trace access PL/SQL routines. These routines require that the
   DBMS_PIPES standard PL/SQL package is installed and that PGAADMIN has
   execute privileges on it. For more information on DBMS_PIPES, refer to the
   Oracle
   Database Application Developer's Guide.

   a. If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user
      PGAADMIN.

   b. From SQL*Plus, run the `pgatiptr.sql` script in the
      `%ORACLE_HOME%\pg4appc\admin` directory. This script creates PL/SQL
      routines that can be called to read and purge trace information created by
      PGAU-generated TIP specifications. It also creates public synonyms for these
      routines. The script prompts you for the necessary user IDs and passwords.

      C:\> cd %ORACLE_HOME%\pg4appc\admin
      SQL> @pgatiptr.sql

8. Install the GPGLOCAL package. This package is required for compilation and
   execution of all PGAU-generated TIP specifications. TIP developers should be
   granted execute privileges on GPGLOCAL (refer to Step 3 of "Optional
   Configuration Steps to Permit Multiple Users" on page 9-10).

   a. Use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.

   b. From SQL*Plus, run the `gpglocal.pkh` script in the
      `%ORACLE_HOME%\pg4appc\admin` directory. This script compiles the
      GPGLOCAL package specification.

      C:\> cd %ORACLE_HOME%\pg4appc\admin
      SQL> @gpglocal.pkh

   c. From SQL*Plus, run the `gpglocal.pkb` script in the
      `%ORACLE_HOME%\pg4appc\admin` directory. This script compiles the
      GPGLOCAL package body.

      C:\> cd %ORACLE_HOME%\pg4appc\admin
      SQL> @gpglocal.pkb
9.4 Upgrading or Migrating the Oracle Server from Previous Gateways

Follow these instructions only if you have a previous version of the Oracle Procedural Gateway for APPC installed on your system and need to configure it for Release 10.1.0.2.0 of the gateway.

1. Upgrade your Oracle Procedural Gateway for APPC to current version levels as follows:
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   b. Install the UTL_RAW package body. From SQL*Plus, run the prvtrawb.plb script from the %ORACLE_HOME%\rdbms\admin directory. This script upgrades the UTL_RAW package body.
      ```
      C:\> cd %ORACLE_HOME%\rdbms\admin
      SQL> @prvtrawb.plb
      ```
   c. Install the UTL_PKG package body. From SQL*Plus, run the prvtpgb.plb script from the %ORACLE_HOME%\rdbms\admin directory. This script upgrades the UTL_PKG package body.
      ```
      C:\> cd %ORACLE_HOME%\rdbms\admin
      SQL> @prvtpgb.plb
      ```

      The prvtrawb.plb and prvtpgb.plb scripts should complete successfully. If they fail because specifications do not exist or were invalidated, then consider reinstalling the package specifications as directed in the following Note.

9.4.1 If You Must Reinstall Package Specifications

If the UTL_RAW or UTL_PKG package has been invalidated or deinstalled, the prvtrawb.plb and prvtpgb.plb scripts may not complete successfully; then you might have to reinstall the package specifications.

If you do reinstall the package specifications, any dependent objects (such as existing user TIPs and client applications) are invalidated and will subsequently need to be recompiled. The impact of this is a one-time performance delay while recompilation of the TIPs and dependent client applications proceeds.

---

**Important:** Before proceeding with reinstallation of the package scripts, make sure that you are in the %ORACLE_HOME%\pg4appc\admin directory.

---

TIPs were split into separate specification and body files in release 3.3 to avoid cascaded recompilations in later releases.

**Step 1 Run the following scripts before proceeding with the PGAU upgrade**

From SQL*Plus, run the utlraw.sql script:

1. If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
2. From SQL*Plus, run the utlraw.sql and utlpg.sql scripts in the Oracle Integrating Server %ORACLE_HOME%\rdbms\admin directory, in the following order, to upgrade their respective package specifications:
   ```
   C:\> cd %ORACLE_HOME%\rdbms\admin
   SQL> @utlraw.sql
   SQL> @utlpg.sql
   ```
Step 2 Repeat installation of UTL_RAW and UTL_PG package body
After the scripts have run, repeat Steps 1b and c in Section 9.4, "Upgrading or Migrating the Oracle Server from Previous Gateways" on page 9-8. Then proceed to the section titled "Upgrading PGAU From Previous Gateway Releases" on page 9-9.

Note: TIPs and dependent client applications must be recompiled after reinstallation of the package specifications. Refer to the "Compiling a TIP" section in Chapter 3 of the Oracle Procedural Gateway for APPC User's Guide for information about compiling TIPs.

9.4.2 Upgrading PGAU From Previous Gateway Releases

1. Upgrade the PG DD as follows before executing the new PGAU:
   a. If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.
   b. From SQL*Plus, run the pgdupgr.sql script in the %ORACLE_HOME%\pg4app\admin directory. This script upgrades the PG DD.

C:\> cd %ORACLE_HOME%\pg4app\admin
SQL> @pgdupgr.sql
9.5 Configuring the Oracle Integrating Server for Gateways to Coexist

You may have an older version of the gateway already installed. Be aware that although a version 10 gateway can communicate with a version 9 data dictionary (PGDD), a version 9 gateway cannot communicate with a version 10 data dictionary. Thus, if you upgrade your data dictionary to a version 10, no gateways which were configured with a version 9 data dictionary will be able to communicate with it.

9.6 Optional Configuration Steps to Permit Multiple Users

The following configuration steps are optional. Perform these steps if you want to allow users other than PGAADMIN to perform PG DD operations using PGAU.

1. Create public synonyms for the PG DD to allow other users to access the tables:
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user SYSTEM.
   b. From SQL*Plus, run the `pgddcr8s.sql` script in the `%ORACLE_HOME%\pg4appc\admin` directory. This script creates public synonyms for the PG DD.

   ```
   C:/> cd %ORACLE_HOME%\pg4appc\admin
   SQL> @pgddcr8s.sql
   ```

2. Create roles for accessing the PG DD, performing definitions of transactions, and generating TIP specifications. The PGAADMIN user can grant these roles to other users as necessary.
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.
   b. From SQL*Plus, run the `pgddcr8r.sql` script in the `%ORACLE_HOME%\pg4appc\admin` directory. This script creates two roles, PGDDDEF and PGDDGEN. The PGDDDEF role provides SELECT, INSERT, UPDATE, and DELETE privileges against some of the PG DD tables, and select privileges against others, and allows execution of the PGAU DEFINE, GENERATE, REDEFINE, REPORT, and UNDEFINE statements. The PGDDGEN role provides select privileges against the PG DD tables, and allows execution of the PGAU GENERATE and REPORT statements only.

   ```
   C:/> cd %ORACLE_HOME%\pg4appc\admin
   SQL> @pgddcr8r.sql
   ```

3. Grant access to PGA required packages.

   TIP developers require access to the following PL/SQL packages, which are shipped with the Oracle Integrating Server:
   - `DBMS_PIPE` in the `%ORACLE_HOME%\rdbms\admin` directory
   - `UTL_RAW` in the `%ORACLE_HOME%\rdbms\admin` directory
   - `UTL_PG` in the `%ORACLE_HOME%\rdbms\admin` directory

   Explicit grants to execute these packages must be made to TIP developers.

   These grants can be private, as in the following example:

   ```
   C:/> sqlplus SYS\pw@database_specification_string
   SQL> GRANT EXECUTE ON UTL_RAW TO tip_developer;
   SQL> GRANT EXECUTE ON UTL_PG TO tip_developer;
   SQL> GRANT EXECUTE ON DBMS_PIPE TO tip_developer;
   SQL> CONNECT PGAADMIN\pw@database_specification_string
   SQL> GRANT EXECUTE ON PGAADMIN.PURGE_TRACE TO tip_developer;
   ```
SQL> GRANT EXECUTE ON PGAADMIN.READ_TRACE TO tip_developer;
SQL> GRANT EXECUTE ON PGAADMIN.GPGLOCAL TO tip_developer;
SQL> exit

Alternatively, these grants can be public, as in the following example:

C:\> sqlplus SYS\pw@database_specification_string
SQL> GRANT EXECUTE ON UTL_RAW TO PUBLIC;
SQL> GRANT EXECUTE ON UTL_PG TO PUBLIC;
SQL> GRANT EXECUTE ON DBMS_PIPE to PUBLIC;
SQL> CONNECT PGAADMIN\pw@database_specification_string
SQL> GRANT EXECUTE ON PGAADMIN.PURGE_TRACE TO PUBLIC;
SQL> GRANT EXECUTE ON PGAADMIN.READ_TRACE TO PUBLIC;
SQL> GRANT EXECUTE ON PGAADMIN.GPGLOCAL TO PUBLIC;
SQL> EXIT

You can use either private or public grants. Both are sufficient for using PGA. Public grants are easier and can be performed now. If you use private grants, then they must be issued each time a new TIP developer user ID is created.

SQL scripts for performing these grants are provided in the %ORACLE_HOME%\pg4appc\admin directory. The pgddapub.sql script performs these grants for public access to the packages. The pgddadev.sql script performs the grants for private access to the packages by a single TIP developer. If you are going to use private grants, then you must run the pgddadev.sql script once for each TIP developer's user ID:

a. Use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.
b. From SQL*Plus, run the appropriate script (pgddapub.sql or pgddadev.sql) from the %ORACLE_HOME%\pg4appc\admin directory. The script performs the necessary grants as described earlier. You are prompted for the required user IDs, passwords, and database specification strings.

If you are using private grants, then repeat this step for each user ID requiring access to the packages.

C:\> cd %ORACLE_HOME%\pg4appc\admin
SQL> @pgddapub.sql
or
SQL> @pgddadev.sql

4. If you are upgrading from a previous release of the gateway, and if you want to upgrade your existing TIPs with new function and maintenance, then regenerate existing TIP specifications using the PGAU GENERATE statement.

Note: The Procedural Gateway Administrative Utility (PGAU) has been enhanced to automatically upgrade existing PG DD entries with a new attribute when a PGAU GENERATE command is executed. To support this enhancement, add a new privilege to the PGDDGEN role. To do this – as the PGAADMIN user, use SQL*Plus to connect to the Oracle Integrating Server where the PG DD is stored. Then issue the following SQL command:

SQL> GRANT INSERT ON PGA_DATA_VALUES TO PGDDGEN

a. Invoke PGAU in the directory path where the PGAU control files are generated and where TIPs are stored:
Optional Configuration Steps to Permit Multiple Users

C:\> pgau
PGAU> CONNECT PGAADMIN\pgaadmin@database_specification_string
PGAU> GENERATE tranname
PGAU> EXIT

For more information about the GENERATE command, refer to the PGAU GENERATE command section in Chapter 2, of the Oracle Procedural Gateway for APPC User’s Guide.

Note that it is not necessary to define the PG DD entries again.

5. Invoke SQL*Plus in the same directory path where the newly-generated TIP specifications are stored.

C:\> sqlplus tip_owner\pw@database_specification_string
SQL> @tipname.pkh
SQL> @tipname.pkb
SQL> exit

PGAU GENERATE produces the TIP in two output files: a specification and a body. You must compile both, first the specification and then the body.

For more information about the GENERATE command, refer to the PGAU GENERATE command section in Chapter 2, of the Oracle Procedural Gateway for APPC User’s Guide.
9.7 Configuring the Gateway

To configure the gateway, perform the following steps:

1. Tailor the Oracle Procedural Gateway for APPC parameters.

Parameters specific to the gateway are supplied in the gateway parameter file, `initsid.ora`, which is in the `%ORACLE_HOME%\pg4appc\admin` directory. A sample gateway parameter file, `initPGA.ora` is provided in this subdirectory.

   **Note:** In the `initsid.ora` file, substitute your `pg4appc` SID name for “sid” in this file name.

   The `initsid.ora` file contains both APPC and TCP/IP parameters, separated by a description. You must modify the `initsid.ora` file by deleting the TCP/IP parameters. Refer to Appendix A, “Gateway Initialization Parameters for SNA Protocol” for the valid APPC parameters.

   The parameters fall into two categories:

   - gateway initialization parameters
     
     These parameters control the general operation of the gateway in the Oracle environment.

   **Important:** Before performing the following step, refer to Appendix A, “Gateway Initialization Parameters for SNA Protocol” for information about tailoring gateway initialization and PGA parameters. Pay special attention to the information about using the PGA\_CAPABILITY parameter.

   - PGA parameters

     PGA parameters control the APPC interface portion of the gateway. Use the SET gateway initialization parameter to specify PGA parameters. Oracle recommends that you group all SET commands for PGA parameters at the end of the `initsid.ora` file.

     **Note:** Misspelled parameters are ignored.

     If you do not plan to configure commit-confirm, proceed to “Verifying the Gateway Installation and OLTP Configuration” on page 9-16.
9.8 Configuring Commit-Confirm

Follow these steps to configure the commit-confirm components.

The steps for configuring commit-confirm include:

- configuring the Oracle Integrating Server where the gateway server will store its transaction log information
- configuring the gateway initialization parameters, and
- configuring the OLTP.

All of these steps must be performed before attempting to use any applications that use commit-confirm.

9.8.1 Configuring the Oracle Integrating Server for Commit-Confirm

The Oracle Integrating Server where the gateway server will store its transaction log information should ideally be on the same system where the gateway runs. The configuration of the server consists of creating the gateway DBA user, creating the commit-confirm log tables and creating the PL/SQL stored procedure used by the gateway server for logging transactions.

The pgacau.sql script from the %ORACLE_HOME%\pg4appc\admin directory creates the gateway DBA user ID. The default user ID is PGADBA with the initial password set to PGADBA. If you want to change the user ID or initial password, you must modify the script.

1. Use SQL*Plus to connect to the Oracle Integrating Server as user SYSTEM.
2. From SQL*Plus, run the pgacau.sql script from the %ORACLE_HOME%\pg4appc\admin directory. This script creates the gateway DBA user ID. If you want to change the password at any time after running this script, you can use the ALTER USER command to change the password. For further information, refer to the Oracle Database SQL Reference.
3. Use SQL*Plus to connect to the Oracle Integrating Server as user PGADBA.
4. From SQL*Plus, run the pgaccpnd.sql script from the %ORACLE_HOME%\pg4appc\admin directory. This script creates the PGA_CC_PENDING table used by the gateway server for its commit-confirm transaction log.
5. From SQL*Plus, run the pgacclog.sql script from the %ORACLE_HOME%\pg4appc\admin directory. This script creates the PGA_CC_LOG PL/SQL stored procedure used by the gateway server for updating the PGA_CC_PENDING table.
6. Disconnect from the Oracle Integrating Server.
9.8.2 Configuring Gateway Initialization Parameters for Commit-Confirm

The gateway initialization parameters are described in Appendix A, "Gateway Initialization Parameters for SNA Protocol". The parameters necessary for commit-confirm support in the gateway are:

- PGA_CAPABILITY
- PGA_LOG_DB
- PGA_LOG_USER
- PGA_LOG_PASS
- PGA_RECOVERY_USER
- PGA_RECOVERY_PASS
- PGA_RECOVERY_TPNAME

These parameters should be added to your initsid.ora file, where sid is the gateway SID for your commit-confirm gateway.

Refer to Appendix A, "Gateway Initialization Parameters for SNA Protocol" for full information about the gateway initialization parameters supported by the Oracle Procedural Gateway for APPC.

9.8.3 Configuring the OLTP for Commit-Confirm

Configuration of the OLTP includes the following:

- defining and installing the commit-confirm transaction log database
- defining and installing the commit-confirm forget/recovery transaction
- defining and installing the sample commit-confirm applications provided with the gateway.

Note: A restart of the OLTP may be necessary to implement the changes required for commit-confirm support. You should plan for this with your OLTP system administrator.

Detailed instructions for configuring the Transaction Server for z/OS and IMS/TM are provided in the %ORACLE_HOME%\pg4appc\demo\CICS\README.doc and %ORACLE_HOME%\pg4appc\demo\IMS\README.doc files, respectively.

Refer to "Implementing Commit-Confirm (SNA Only)" in the Oracle Procedural Gateway for APPC User’s Guide for detailed information about commit-confirm.

- You will take steps to verify configuration of commit-confirm later in this chapter, in Section 9.9.3, "Verifying OLTP Configuration for Commit-Confirm" on page 9-21.

However, first proceed to Section 9.9 to verify the gateway installation.
9.9 Verifying the Gateway Installation and OLTP Configuration

To verify the gateway installation and the OLTP configuration, perform the following procedures after installing Oracle Procedural Gateway for APPC. In addition, if you chose to configure commit-confirm, follow the steps to verify the OLTP configuration for commit-confirm.

---

**Note:** If your database link name is not "PGA," modify the demonstration .sql files to give them the particular database link name that you created in Step 5 of "Integrating Server Configuration: First-Time Gateway Installations" on page 9-5. You must modify the following .sql files:

- pgavsn.sql
- pgaecho.sql
- pgacics.sql
- pgaidms.sql
- pgaims.sql
- pgamvs.sql

---

9.9.1 Verifying the Gateway Installation

To verify the gateway software installation using the database link PGA previously created, perform the following steps:

1. Using SQL*Plus, connect to your Oracle Integrating Server as user PGAADMIN.

2. Run %ORACLE_HOME%\pg4appc\demo\pgavsn.sql.

   ```
   C:\> cd %ORACLE_HOME%\pg4appc\demo
   SQL> @pgavsn.sql
   ```

   The server version number banner appears at your terminal. You will receive the following output:

   Oracle Procedural Gateway for APPC.
   Version 10.1.0.2.0 Thu Feb 13 13:12:49 2003

   Copyright (c) Oracle Corporation 1979, 2003. All rights reserved.

   PL/SQL procedure successfully completed.

3. Run %ORACLE_HOME%\pg4appc\demo\pgaecho.sql.

   ```
   C:\> cd %ORACLE_HOME%\pg4appc\demo
   SQL> @pgaecho.sql
   ```

   You will receive the following output:

   ```
   ==> Congratulations, your installation was successful. <==
   ```
9.9.2 Verifying the OLTP Configuration

The procedure for verifying your OLTP configuration varies, depending on which OLTP you are using and depending upon which platform the OLTP is running on. CICS Transaction Server for z/OS, IMS/TM, APPC/MVS, IDMS-DC and z/OS are the currently supported OLTPs. Follow the instructions for verifying installation.

Attention: If you have not completed the file transfers detailed in "Preparing to Configure a Gateway Installation/Upgrade" on page 9-2, complete them now, before proceeding to the next step.

9.9.2.1 CICS Verification

If your OLTP is CICS Transaction Server for z/OS, perform the following steps to verify the CICS configuration.

1. To verify that the FLIP transaction is installed correctly, log on to your CICS Transaction Server for z/OS and enter the following transaction, replacing FLIP with the transaction ID you chose for FLIP when you configured your CICS Transaction Server for z/OS for the gateway:

   FLIP THIS MESSAGE

   The following output appears at your terminal:

   EGASSEM SIHT PILF

2. From the Microsoft Windows platform, modify the pgacics.sql file which resides at %ORACLE_HOME%\pg4appc\demo\CICS\pgacics.sql.

   Customize the following three items used for accessing the gateway and the CICS Transaction Server for z/OS, as described in the comments at the beginning of the file:
   - the CICS transaction ID
   - the side profile name
   - the logmode entry name

3. Ensure that the SNA Server on your system has been started.

4. Log on to your CICS Transaction Server for z/OS and enter this transaction, where name is the name of the CONNECTION definition installed by the DFHCSUDP job you ran in the CICS configuration steps:

   CEMT SET CONNECTION(name) ACQUIRED

   This transaction activates the CICS connection to Microsoft Windows.

5. Use SQL*Plus to connect to your Oracle Integrating Server as PGAADMIN.

6. Run pgacics.sql.

   C:\> cd %ORACLE_HOME%\pg4appc\demo\CICS
   SQL> @pgacics.sql

   The following message appears:

   ==> Congratulations, your gateway is communicating with CICS ===

Your CICS Transaction Server for z/OS installation verification is complete.


9.9.2.2 IDMS-DC Verification

If your OLTP is IDMS-DC, perform the following steps to verify the IDMS-DC configuration:

1. From your Microsoft Windows platform, modify the `pgaidms.sql` file, which resides at `%ORACLE_HOME%\pg4appc\demo\IDMS\pgaidms.sql`. Customize the following three items used for accessing the gateway and the IDMS-DC system, as described in the comments at the beginning of the file:
   - the IDMS-DC transaction ID
   - the side profile name
   - the logmode entry name

2. Ensure that the SNA Server on your system has been started.

3. Using the IDMS-DC DCMT transaction, display the LU6.2 line to check that sessions have been started with your system. Enter the following command, where `linename` is the name of the LINE defined for LU6.2 communications with your system:

   ```
   DCMT DIS LINE linename
   ```

   Each defined L-TERM/P-TERM should show a status of INSRV. Any other status indicates a problem with the IDMS-DC APPC interface

4. Use SQL*Plus to connect to your Oracle Integrating Server as PGAADMIN.

5. Run `pgaidms.sql`.

   ```
   C:\> cd %ORACLE_HOME%\pg4appc\demo\IDMS
   SQL> @$pgaidms.sql
   ```

   The following message appears:

   ```
   ==> Congratulations, your gateway is communicating with IDMS-DC===
   ```

Your IDMS-DC installation verification is now complete.
9.9.2.3 IMS/TM Verification

If your OLTP is IMS/TM, perform the following steps to verify the IMS/TM configuration:

1. To verify that the FLIP transaction is installed correctly, log on to your IMS/TM system and enter the following transaction, replacing FLIP with the transaction ID you chose for FLIP when you configured your IMS/TM system for the gateway:

   FLIP THIS MESSAGE

   The following output appears on your terminal:

   EGASSEM SIHT PILF

2. From a Microsoft Windows platform, modify the pgaims.sql file, which resides at

   %ORACLE_HOME%\pg4appc\demo\IMS\pgaims.sql. Customize the following three items used for accessing the gateway and the IMS/TM system, as described in the comments at the beginning of the file:

   - the IMS/TM transaction ID
   - the side profile name
   - the logmode entry name

3. Ensure that the SNA Server on your system has been started.

4. Use SQL*Plus to connect to your Oracle Integrating Server as PGAADMIN.

5. Run pgaims.sql.

   C:\> cd %ORACLE_HOME%\pg4appc\demo\IMS
   SQL> @pgaims.sql

   The following message appears:

   ==> Congratulations, your gateway is communicating with IMS/TM ===

   Your IMS/TM installation verification is now complete.
9.9.2.4 APPC/MVS Verification

If your OLTP is APPC/MVS, perform the following steps to verify the APPC/MVS configuration:

1. Verify that your APPC/MVS subsystem is active.

2. From your Microsoft Windows platform, modify the pgamvs.sql file, which resides at %ORACLE_HOME%/pg4appc/demo/MVS/pgamvs.sql. Customize the following three items used for accessing the gateway and the APPC/MVS system, as described in the comments at the beginning of the file:
   - the APPC/MVS transaction ID
   - the side profile name
   - the logmode entry name

3. Ensure that the SNA Server on your system has been started.

4. Use SQL*Plus to connect to your Oracle Integrating Server as PGAADMIN.

5. Run pgamvs.sql.

   C:\> cd %ORACLE_HOME%/pg4appc/demo/MVS
   SQL> @pgamvs.sql

   The following message appears:
   => Congratulations, your gateway is communicating with APPC/MVS <=

Your APPC/MVS installation verification is now complete.
9.9.3 Verifying OLTP Configuration for Commit-Confirm

If you chose to configure commit-confirm in Section 9.8, "Configuring Commit-Confirm", the following section will assist you in verifying the configuration.

**Note:** Refer to Chapter 5, "Implementing Commit-Confirm" in the Oracle Procedural Gateway for APPC User’s Guide for background information on the components and capabilities of commit-confirm.

Samples are provided with the gateway for Transaction Server for z/OS and IMS/TM for implementing commit-confirm support. They are in the following directories, respectively: %ORACLE_HOME%\pg4appc\demo\CICS and %ORACLE_HOME%\pg4appc\demo\IMS. A README.doc file in each directory provides detailed information about installing and using the samples. JCL files for compiling and linking the sample programs are provided as well. The samples included with the gateway assist you with the following:

- Creating and initializing the commit-confirm transaction log databases and defining those databases to the OLTP. For Transaction Server for z/OS, the sample uses a VSAM file for the log database. For IMS/TM, a SHISAM/VSAM database is used.

- Using subroutines for receiving the Oracle Global Transaction ID from the gateway and logging it into the commit-confirm transaction log database. These subroutines are provided in the pgacclg.asm files. They can be used in your applications to reduce the complexity of the code changes to your programs.

  For Transaction Server for z/OS, the subroutine provided is called using the EXEC CICS LINK interface. For IMS/TM, the subroutine provided is called using the standard CALL statement or its equivalent in your application's programming language. Both of these subroutines are written in 370 assembler to eliminate any inter-language interface complexities and compiler dependencies.

- Forget/recovery transactions. These are provided in the pgareco.asm files. Forget/recovery transactions must be installed into your OLTP and accessible through APPC so that the gateway can invoke them to forget a transaction once it has been successfully committed, and to query a transaction’s state during recovery processing. These transactions delete the entry for a particular Oracle Global Transaction ID from the OLTP commit-confirm transaction log database during forget processing, and query the entry for a particular Oracle Global Transaction ID from the OLTP commit-confirm transaction log database during recovery processing. For both Transaction Server for z/OS and IMS/TM, these transactions are written in 370 assembler.

- Using the sample commit-confirm transaction log databases and subroutines. For Transaction Server for z/OS, a sample DB2 update transaction, DB2C, is provided in the pgadb2c.cob file. This is a COBOL example that updates the DB2 sample EMP table. For IMS/TM, a sample DLI update transaction, PGAIMSU, is provided in the pgaimsu.cob file. This is a COBOL example that updates the DLI sample PARTS database.
9.10 Performing Post-installation Procedures

The following are optional steps that you can perform as necessary. Installation of the sample applications for your OLTP is recommended to help you to fully understand how the gateway works and how it interfaces with your OLTP.

9.10.1 Installing Sample Applications

Your Oracle Procedural Gateway for APPC package contains sample PL/SQL procedures and OLTP transaction programs that demonstrate the capabilities of the gateway. Samples are provided for the following:

APPC/MVS
- z/OS dataset information

CICS Transaction Server for z/OS
- ADABAS inquiry
- DB2 inquiry
- DB2 multi-row inquiry
- DB2 update
- VSAM inquiry
- VSAM update
- DLI inquiry
- FEPI DB2 inquiry
- FEPI VSAM inquiry
- IDMS-DC
- IDMS/R inquiry

IMS/TM
- IMS inquiry using IVTNO and IVTNV sample transactions
- IMS PARTS inquiry (CPI-C)
- IMS PARTS update (CPI-C)

Additional samples are added to the distribution media in later releases of the product. Wherever possible, the sample applications use the sample databases provided with the database products.

For this release, full documentation on installing and using the sample applications is available in the README.doc files in the following directories:

- %ORACLE_HOME%/pg4appc/demo
- %ORACLE_HOME%/pg4appc/CICS
- %ORACLE_HOME%/pg4appc/IMS
- %ORACLE_HOME%/pg4appc/MVS
- %ORACLE_HOME%/pg4appc/IDMS
This chapter outlines the steps needed to configure the Oracle Integrating Server for a gateway using TCP/IP for IMS Connect on your Microsoft Windows platform. It also provides the steps necessary to verify installation and configuration of the gateway and OLTP components. It contains the following sections:

- "Preparing to Configure a Gateway Installation" on page 10-2
- "Configuring the Oracle Integrating Server" on page 10-4
- "Optional Configuration Steps to Permit Multiple Users" on page 10-8
- "Configuring TCP/IP for the Gateway" on page 10-11
- "Configuring the Gateway" on page 10-11
- "Loading the PGA_TCP_IMSC Table" on page 10-12
- "Verifying the Gateway Installation and OLTP Configuration" on page 10-13
- "Performing Post-installation Procedures" on page 10-16
Configuring the Oracle Procedural Gateway for APPC using TCP/IP support for IMS Connect involves working with the following components:

- the Oracle Integrating Server
- your Windows system
- your network
- the OLTP

10.1 Before You Begin

This chapter requires you to input parameters unique to your system in order to properly configure the gateway and TCP/IP communications interface.

Refer to Appendix E, "Configuration Worksheet" for a worksheet listing the installation parameters you will need to know before you can complete the configuration process. Ask your network administrator to provide you with these unique parameter names before you begin.

10.2 Preparing to Configure a Gateway Installation

There are three ways to establish the gateway-Oracle Integrating Server relationship when you are installing or upgrading/migrating the gateway:

- When the Oracle Integrating Server and the gateway are installed in the same ORACLE_HOME on the same machine;
- When the Oracle Integrating Server and the gateway are installed on separate machines; or
- When the Oracle Integrating Server and the gateway are on the same machine but in different directories

Depending upon the location of your gateway and your Oracle Integrating Server, you may need to transfer some of the gateway administrative files to the location where your Oracle Integrating Server is installed.

Follow the instructions appropriate to your combination of the gateway-Oracle Integrating Server locations listed below.

**When the Oracle Integrating Server and the gateway are installed in the same ORACLE_HOME on the same machine**

You do not need to transfer files. Proceed to "Configuring the Oracle Integrating Server" on page 10-4.
When the Oracle Integrating Server and the gateway are installed on separate machines

1. Locate the gateway administrative files in the gateway
   %ORACLE_HOME%\pg4appc\admin directory. All files in this directory that
   have the suffix .sql, .pkh, and .pkb must be copied into a similarly-named
   directory in the Oracle Integrating Server’s Oracle home directory.

2. Now locate the gateway demo files and subdirectories in the gateway
   %ORACLE_HOME%\pg4appc\demo directory. Copy the pgavsn.sql and
   pgaecho.sql files into a similarly named directory in the Oracle Integrating Server.

3. Copy the pgaims.sql file from the gateway Oracle home
   %ORACLE_HOME%\pg4appc\demo\IMS directory to your Oracle Integrating
   Server’s Oracle home %ORACLE_HOME%\pg4appc\demo\IMS directory.

4. Optional Steps: If you want to run IVTNV and IVTNO, you will need to copy the
   ivtno.ctl, ivtnod.sql, ivtnv.ctl and ivtnvd.sql files into the Oracle Integrating
   Server’s Oracle home %ORACLE_HOME%\pg4appc\demo\IMS directory as well. Make sure to generate the required TIPs and transfer them as well.

When the Oracle Integrating Server and the gateway are on the same machine but in different directories

You must change your gateway’s Oracle home to the Oracle Integrating Server’s
Oracle home directory.

1. For example, if your gateway’s Oracle home is set as follows:

   C:\> echo\%ORACLE_HOME\%
   C:\oracle\pga\10.0

   and your server’s Oracle home is located in the ‘oracle\pga\10.0’ directory, then you need to do the following:

   C:\> SET ORACLE_HOME=C:\oracle\pga\10.0

2. Now create the directories with the following commands:

   C:\> cd %ORACLE_HOME%
   C:\> mkdir pg4appc
   C:\> mkdir pg4appc\admin
   C:\> mkdir pg4appc\demo
   C:\> mkdir pg4appc\demo\IMS

3. Use whatever file transfer mechanism is available on your system to copy all of the
   .sql, .pkh, and .pkb files from the gateway’s Oracle home
   %ORACLE_HOME%\pg4appc\admin directory to the Oracle Integrating
   Server’s Oracle home %ORACLE_HOME%\pg4appc\admin directory.

4. You may also transfer the demo files from the gateway directory to the Oracle
   Integrating Server directory. Copy the pgavsn.sql and pgaecho.sql files and
   directory recursively from the gateway Oracle home’s
   %ORACLE_HOME%\pg4appc\demo directory to the Oracle Integrating Server’s
   %ORACLE_HOME%\pg4appc\demo directory.

5. You may also copy the pgaims.sql file from the gateway Oracle home
   %ORACLE_HOME%\pg4appc\demo\IMS directory to the Oracle Integrating
   Server Oracle home %ORACLE_HOME%\pg4appc\demo\IMS directory.

Optional Steps: If you want to run IVTNV and IVTNO, you will need to copy the
ivtno.ctl, ivtnod.sql, ivtnv.ctl and ivtnvd.sql files into the Oracle Integrating
Server’s Oracle home %ORACLE_HOME%\pg4appc\demo\IMS directory as well. Make sure to generate the required TIPs and transfer them as well.

Proceed with “Configuring the Oracle Integrating Server” on page 10-4. Following those steps, you may want to perform the Optional Configuration Steps to Permit Multiple Users, on page 10-8.

10.3 Configuring the Oracle Integrating Server

Follow these steps to configure your Oracle Integrating Server after installing the Oracle Procedural Gateway for APPC.

1. Ensure that the UTL_RAW PL/SQL package has been installed on the Oracle Integrating Server. All PGAU-generated TIP specifications use UTL_RAW, which provides routines for manipulating raw data.
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   b. From SQL*Plus, enter the following command:
      
      SQL> DESCRIBE UTL_RAW

      The DESCRIBE statement produces output on your screen. If you browse through the output, you should see some functions, including a compare function. If you do not see this output, then continue the UTL_RAW installation by performing Step d below.

      If the DESCRIBE statement indicates success, then your Oracle Integrating Server has UTL_RAW installed and you can proceed to Step 2.
   c. Use SQL*Plus to connect to the Oracle Integrating Server as SYS.
   d. From SQL*Plus, run the utlraw.sql and prvtrawb.plb scripts in the Oracle Integrating Server %ORACLE_HOME%\rdbms\admin directory, in the following order:

      C:\> cd %ORACLE_HOME%\rdbms\admin
      SQL> @utlraw.sql
      SQL> @prvtrawb.sql

2. Ensure that the DBMS_OUTPUT standard PL/SQL package is enabled on your Oracle Integrating Server. The sample programs and installation verification programs on the distribution media use this standard package.
   a. If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   b. Enter the following command:

      SQL> DESCRIBE DBMS_OUTPUT

      The DESCRIBE statement produces output on your screen. If you browse through that output, you should see some functions, including a put_line function.

      If you do not see this output, then you must create the DBMS_OUTPUT package. Refer to the Oracle Database Application Developer’s Guide for more information about creating the DBMS_OUTPUT package. After successful installation of the DBMS_OUTPUT package, issue the DESCRIBE statement.

      If the DESCRIBE statement indicates success, then your Oracle Integrating Server has DBMS_OUTPUT created, and you can proceed to Step 3.
3. Install the UTL_PG PL/SQL package. All PGAU-generated TIP specifications use UTL_PG, which provides routines for performing numeric conversions to and from raw data.
   a. If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   b. From SQL*Plus, run the utlpg.sql and prvtpgb.plb scripts in the Oracle Integrating Server’s %ORACLE_HOME%\rbms\admin directory, in the following order:

   C:\> cd %ORACLE_HOME%\rbms\admin
   SQL> @utlpg.sql
   SQL> @prvtpgb.plb

4. Install the Heterogeneous Services (HS) catalogs.
   a. If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user SYS.
   b. Enter the following command:

   SQL> DESCRIBE HS_FDS_CLASS

   The DESCRIBE statement produces output on your screen. If the DESCRIBE statement indicates success, then heterogeneous services catalogs have been created on your Oracle Integrating Server and you can proceed to Step 5.
   If the DESCRIBE statement does not indicate success, then you must create Heterogeneous Services catalogs and you must follow Step c below:
   c. If it is necessary to create the Heterogeneous Services catalog, enter the following command:

   C:\> cd %ORACLE_HOME%\rbms\admin
   SQL> @caths.sql

5. Create a public database link to access the Oracle Procedural Gateway for APPC:
   Use SQL*Plus to connect to the Oracle Integrating Server as user SYSTEM. You can use the following SQL*Plus sample whether the Oracle Integrating Server and the gateway are on the same system or on different systems. In the following sample, pgasrv is the tns_name_entry that will be assigned to the gateway when you modify the tnsnames.ora file later in this chapter.

   SQL> CREATE PUBLIC DATABASE LINK PGA USING 'PGASRV'

6. Create the gateway administrator user PGAADMIN and install the PG DD.
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user SYSTEM.
   b. From SQL*Plus, run the pgacr8au.sql script in the %ORACLE_HOME%\pg4appc\admin directory. This script creates the PGAADMIN user ID.

   The initial password defined for PGAADMIN is PGAADMIN. Use the ALTER USER command to change the password. For further information about password issues, refer to the Oracle Database SQL Reference.

   C:\> cd %ORACLE_HOME%\pg4appc\admin
   SQL> @pgacr8au.sql
c. Use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.

d. From SQL*Plus, run the `pgddcr8.sql` script in the
   `%ORACLE_HOME%/pg4appc/admin` directory. This script installs the
   PG DD.
   ```
   C:\> cd %ORACLE_HOME%/pg4appc/admin
   SQL> @pgddcr8.sql
   ```

e. From SQL*Plus, connect to the Oracle Integrating Server as user SYS.

f. Grant execution privileges on DBMS_PIPE to PGAADMIN:
   ```
   SQL> GRANT EXECUTE ON DBMS_PIPE TO PGAADMIN
   ```

7. Ensure that the pg4tcpmap package has been installed on your Oracle Integrating
   Server. Follow Steps a through c to test for proper installation of pg4tcpmap.

   Refer to "Output for pg4tcpmap Tool" in Appendix B for a sample of the output
   from the pg4tcpmap tool, and refer to Chapter 6 of the Oracle Procedural Gateway
   for APPC User’s Guide for details about the commands needed to run the tool.

a. Use SQL*Plus to connect to the Oracle Integrating Server as user SYSTEM.

b. Enter the following command:
   ```
   SQL> select owner, table_name
         from dba_tables
         where table_name = ‘PGA_TCP_IMSC’,
         and owner = ‘PGAADMIN’;
   SQL> column owner format a 10
   SQL> column owner format a 18
   SQL> column owner format a 14
   SQL> select owner, index_name, table_name
         from dba_indexes
         where index_name = ‘PGA_TCP_IMSC_IND’;
   ```

   Both select statements must produce one row each. Following is the result for
   the first select statement:
   ```
   TABLE_NAME                        OWNER
   ---------------------------------  ------------------------------
   PGA_TCP_IMSC                      PGAADMIN
   ```

   Following is the result of the second select statement:
   ```
   OWNER          INDEX_NAME           TABLE_NAME      UNIQUENESS
   ----------     ------------------   --------------  ---------
   PGAADMIN       PGA_TCP_IMSC_IND     PGA_TCP_IMSC    UNIQUE
   ```

   If the select statements produce the above output on your screen, then you can
   skip Step C. If the select statement produces no output or more than one row,
   then the result is not the same as the output described above, and it is
   necessary for you to perform Step c.

c. From SQL*Plus, run the `pgaimsc.sql` script in the Oracle Integrating Server’s
   `%ORACLE_HOME%/pg4appc/admin` directory:
   ```
   C:\> cd %ORACLE_HOME%/pg4appc/admin
   SQL> @pgaimsc.sql
   ```

8. Install the TIP trace access PL/SQL routines. These routines require that the
   DBMS_PIPES standard PL/SQL package is installed and that PGAADMIN has
execute privileges on it. For more information on DBMS_PIPES, refer to the *Oracle Database Application Developer’s Guide*.

**a.** If necessary, use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.

**b.** From SQL*Plus, run the `pgatiptr.sql` script in the `%ORACLE_HOME%\pg4app\admin` directory. This script creates PL/SQL routines that can be called to read and purge trace information created by PGAU-generated TIP specifications. It also creates public synonyms for these routines. The script prompts you for the necessary user IDs and passwords.

```
C:\> cd %ORACLE_HOME%\pg4app\admin
SQL> @pgatiptr.sql
```

9. Install the GPGLOCAL package. This package is required for compilation and execution of all PGAU-generated TIP specifications. TIP developers should be granted execute privileges on GPGLOCAL (refer to “Optional Configuration Steps to Permit Multiple Users” on page 10-8).

**a.** Use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.

**b.** From SQL*Plus, run the `gpglocal.pkh` script in the `%ORACLE_HOME%\pg4app\admin` directory. This script compiles the GPGLOCAL package specification.

```
C:\> cd %ORACLE_HOME%\pg4app\admin
SQL> @gpglocal.pkh
```

**c.** From SQL*Plus, run the `gpglocal.pkb` script in the `%ORACLE_HOME%\pg4app\admin` directory. This script compiles the GPGLOCAL package body.

```
C:\> cd %ORACLE_HOME%\pg4app\admin
SQL> @gpglocal.pkb
```

*Note:* **Recompile TIPs when changing communication protocol from SNA to TCP/IP:**

If you have existing TIPs that were generated previously on a gateway using the SNA protocol and you want to utilize the new TCP/IP feature, then the TIPs will have to be regenerated by PGAU with mandatory NLS_LANGUAGE and Side Profile Settings. Specify the appropriate ASCII character set in the DEFINE TRANSACTION command.

This is due to the fact that the gateway assumes that the appropriate user exit in IMS Connect is being used, which would translate between the appropriate ASCII and EBCDIC character sets.
10.4 Optional Configuration Steps to Permit Multiple Users

The following configuration steps are optional. Perform these steps if you want to allow users other than PGAADMIN to perform PG DD operations using PGAU.

1. Create public synonyms for the PG DD to allow other users to access the tables:
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user SYSTEM.
   b. From SQL*Plus, run the `pgddcr8s.sql` script in the `%ORACLE_HOME%\pg4appc\admin` directory. This script creates public synonyms for the PG DD.

   ```
   C:\> cd %ORACLE_HOME%\pg4appc\admin
   SQL> @pgddcr8.sql
   ```

2. Create roles for accessing the PG DD, performing definitions of transactions, and generating TIP specifications. The PGAADMIN user can grant these roles to other users as necessary.
   a. Use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.
   b. From SQL*Plus, run the `pgddcr8r.sql` script in the `%ORACLE_HOME%\pg4appc\admin` directory. This script creates two roles, PGDDDEF and PGDDGEN. The PGDDDEF role provides SELECT, INSERT, UPDATE, and DELETE privileges against some of the PG DD tables, and select privileges against others, and allows execution of the PGAU DEFINE, GENERATE, REDEFINE, REPORT, and UNDEFINE statements. The PGDDGEN role provides select privileges against the PG DD tables, and allows execution of the PGAU GENERATE and REPORT statements only.

   ```
   C:\> cd %ORACLE_HOME%\pg4appc\admin
   SQL> @pgddcr8r.sql
   ```

3. Grant access to PGA required packages.

   TIP developers require access to the following PL/SQL packages, which are shipped with the Oracle Integrating Server:
   - `DBMS_PIPE` in the `%ORACLE_HOME%\rdbms\admin` directory
   - `UTL_RAW` in the `%ORACLE_HOME%\rdbms\admin` directory
   - `UTL_PG` in the `%ORACLE_HOME%\rdbms\admin` directory

   Explicit grants to execute these packages must be made to TIP developers.

   SQL scripts for performing these grants are provided in the `%ORACLE_HOME%\pg4appc\admin` directory. The `pgdappub.sql` script performs these grants for public access to the packages. The `pgddadev.sql` script performs the grants for private access to the packages by a single TIP developer. If you are going to use private grants, then you must run the `pgddadev.sql` script once for each TIP developer’s user ID:

   a. Use SQL*Plus to connect to the Oracle Integrating Server as user PGAADMIN.
   b. From SQL*Plus, run the appropriate script (`pgdappub.sql` or `pgddadev.sql`) from the `%ORACLE_HOME%\pg4appc\admin` directory. The script performs the necessary grants as described earlier. You are prompted for the required user IDs, passwords, and database specification strings. If you are using private grants, then repeat this step for each user ID requiring access to the packages.
Optional Configuration Steps to Permit Multiple Users

1. **Gateway Configuration Using TCP/IP Communication Protocol**

   C:\> cd %ORACLE_HOME%\pg4appc\admin
   SQL> @pgddapub.sql

   or

   SQL> @pgddadev.sql

   These grants can be private, as in the following example:

   C:\> sqlplus SYS\pw@database_specification_string
   SQL> GRANT EXECUTE ON UTL_RAW TO tip_developer;
   SQL> GRANT EXECUTE ON UTL_PG TO tip_developer;
   SQL> GRANT EXECUTE ON DBMS_PIPE TO tip_developer;
   SQL> CONNECT PGAADMIN\pw@database_specification_string
   SQL> GRANT EXECUTE ON PGAADMIN.PURGE_TRACE TO tip_developer;
   SQL> GRANT EXECUTE ON PGAADMIN.READ_TRACE TO tip_developer;
   SQL> GRANT EXECUTE ON PGAADMIN.GPGLOCAL TO tip_developer;
   SQL> exit

   Alternatively, these grants can be public, as in the following example:

   C:\> sqlplus SYS\pw@database_specification_string
   SQL> GRANT EXECUTE ON UTL_RAW TO PUBLIC;
   SQL> GRANT EXECUTE ON UTL_PG TO PUBLIC;
   SQL> GRANT EXECUTE ON DBMS_PIPE TO PUBLIC;
   SQL> CONNECT PGAADMIN\pw@database_specification_string
   SQL> GRANT EXECUTE ON PGAADMIN.PURGE_TRACE TO tip_developer;
   SQL> GRANT EXECUTE ON PGAADMIN.READ_TRACE TO tip_developer;
   SQL> GRANT EXECUTE ON PGAADMIN.GPGLOCAL TO tip_developer;
   SQL> EXIT

   You can use either private or public grants. Both are sufficient for using PGA. Public grants are easier and can be performed now. If you use private grants, then they must be issued each time a new TIP developer user ID is created.

4. If you are upgrading from a previous release of the gateway when the communication protocol was SNA, to the current gateway using TCP/IP, and if you want to upgrade your existing TIPs with new function and maintenance, then regenerate existing TIP specifications using the PGAU GENERATE statement.

   a. Invoke PGAU in the directory path where the PGAU control files are generated and where TIPs are stored:

   C:\> pgau
   PGAU> CONNECT PGAADMIN\pgaadmin\database_specification_string
   PGAU> GENERATE tranname
   PGAU> EXIT

   **Note:** The Procedural Gateway Administrative Utility (PGAU) has been enhanced to automatically upgrade existing PG DD entries with a new attribute when a PGAU GENERATE command is executed. To support this enhancement, add a new privilege to the PGDDGEN role. To do this – as the PGAADMIN user, use SQL*Plus to connect to the Oracle Integrating Server where the PG DD is stored. Then issue the following SQL command:

   SQL> GRANT INSERT ON PGA_DATA_VALUES TO PGDDGEN

   

Gateway Configuration Using TCP/IP Communication Protocol 10-9
For more information about the GENERATE command, refer to the PGAU GENERATE command section in Chapter 2 of the *Oracle Procedural Gateway for APPC User’s Guide*.

Note that it is not necessary to define the PG DD entries again.

5. Invoke SQL*Plus in the same directory path where the newly-generated TIP specifications are stored.

```
C:\> sqlplus tip_owner\pw@database_specification_string
SQL> @tipname.pkh
SQL> @tipname.pkb
SQL> exit
```

PGAU GENERATE produces the TIP in two output files: a specification and a body. You must compile both, first the specification and then the body.

For more information about the GENERATE command, refer to the PGAU GENERATE command section in Chapter 2, of the *Oracle Procedural Gateway for APPC User’s Guide*. 
10.5 Configuring TCP/IP for the Gateway

You must now configure the TCP/IP for IMS Connect communication package profiles for TCP/IP connections.

Configure the profiles to define the TCP/IP conversations with the OLTP. Refer to Chapter 7, "Configuring the TCP/IP Communications Package for IMS Connect" for the appropriate instructions.

When you have finished configuring your communications package, return to the following section, Section 10.6, "Configuring the Gateway" on page 10-11.

10.6 Configuring the Gateway

To configure the gateway, perform the following:

1. Tailor the gateway parameters.

   There are a number of parameters specific to the Oracle Procedural Gateway for APPC when it is using TCP/IP for IMS Connect. These are supplied in the gateway parameter file, `initsid.ora`, which is in the `%ORACLE_HOME%\pgappc\admin` directory. A sample gateway parameter file, `initPGA.ora` is provided in this subdirectory.

   **Note:** In the `initsid.ora` file, substitute your gateway SID name for "sid" in this file name.

   The `initsid.ora` file contains both APPC and TCP/IP parameters, separated by a description. You must modify the `initsid.ora` file by deleting the APPC parameters. Refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol" for the valid TCP/IP parameters.

   The parameters fall into two categories:

   - gateway initialization parameters.
     
     These parameters control the general operation of the gateway in the Oracle environment.

   **Important:** Before performing the following step, refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol" for information about tailoring gateway initialization and PGA parameters. Pay special attention to the information about using the PGA_CAPABILITY parameter.

   - PGA parameters.
     
     PGA parameters control the TCP/IP interface portion of the gateway. Use the SET gateway initialization parameter to specify PGA parameters. Oracle recommends that you group all SET commands for PGA parameters at the end of the `initsid.ora` file.

   **Note:** Misspelled parameters are ignored.
10.7 Loading the PGA_TCP_IMSC Table

Gateway users who wish to employ the TCP/IP protocol do so by using the pg4tcpmap tool.

The pg4tcpmap tool resides on the gateway. Its function is to map the Side Profile Name to TCP/IP and IMS Connect attributes. You must run this tool before executing the PL/SQL gateway statements (such as `%ORACLE_HOME%\pg4appc\demo\IMS\pgaims.sql`).

In PGAINIT TIP, for example, the user must specify a Side Profile Name. The SNA protocol recognizes and utilizes the parameter. In this release of the gateway, the pg4tcpmap tool uses the original PGAINIT TIP format to map the relevant SNA parameters to TCP/IP. The pg4tcpmap tool inserts the values of these parameters into a table called PGA_TCP_IMSC.

Before executing pg4tcpmap, you must specify the ORACLE_HOME, Oracle SID and modify initSID.ora. Refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol" in this guide and Chapter 6 in the Oracle Procedural Gateway for APPC User’s Guide for complete information about the pg4tcpmap commands.

Chapter 6 of the Oracle Procedural Gateway for APPC User’s Guide contains a list of the pg4tcpmap commands and instructions for using them, as well as an example of the table. Refer to "Problem Determination" in the Oracle Procedural Gateway for APPC User’s Guide for information about the trace file for the executed pg4tcpmap tool.

To operate this tool execute the following command:

```
C:\> cd %ORACLE_HOME%\bin
C:\> pg4tcpmap
```

Refer to "Output for pg4tcpmap Tool" on page B-4 for a sample of the pg4tcpmap output.
10.8 Verifying the Gateway Installation and OLTP Configuration

To verify the gateway installation and the OLTP configuration, perform the following procedures after installing the gateway.

---

**Note:** If your database link name is not "PGA," modify the demonstration .sql files to give them the particular database link name that you created in Step 5 of "Configuring the Oracle Integrating Server" on page 10-4. You must modify the following .sql files:

- pgavsn.sql
- pgaecho.sql
- pgaims.sql

---

10.8.1 Verifying the Gateway Installation

To verify the gateway software installation using the database link PGA previously created, perform the following steps:

1. Using SQL*Plus, connect to your Oracle Integrating Server as user PGAADMIN.
2. Run `%ORACLE_HOME%\pg4appc\demo\pgavsn.sql`.

   C:\> cd %ORACLE_HOME%\pg4appc\demo
   SQL> @pgavsn.sql

   The server version number banner appears at your terminal. You will receive the following output:

   Oracle Procedural Gateway for APPC (extension TCP/IP for IMS Connect).
   Version 10.0.1.2.0 Thu Feb 13 13:12:49 2003

   Copyright (c) Oracle Corporation 1979, 2003. All rights reserved.

   PL/SQL procedure successfully completed.

3. Run `%ORACLE_HOME%\pg4appc\demo\pgaecho.sql`.

   C:\> cd %ORACLE_HOME%\pg4appc\demo
   SQL> @pgaecho.sql

   You will receive the following output:

   ==> Congratulations, your installation was successful. <==
10.8.2 Verifying the OLTP Configuration

Use the following procedure to verify your OLTP configuration.

---

**Attention:** If you have not completed the file transfers detailed in 'Preparing to Configure a Gateway Installation' on page 10-2, complete them now, before proceeding to the next step.

---

10.8.2.1 IMS/TM Verification

Perform the following steps to verify the IMS/TM configuration. Be certain that you have installed and configured the IMS Connect and that it is up and running before you begin this procedure. Refer to the IBM *IMS Connect Guide and Reference* for information about how to perform the installation and configuration tasks.

---

**Note:** TIPs must be recompiled when changing communication protocol to TCP/IP.

**TCP/IP only:** If you have existing TIPs that were generated previously on a gateway using the SNA protocol and you want to utilize the new TCP/IP feature, then the TIPs will have to be regenerated by PGAU with mandatory NLS_LANGUAGE and Side Profile Settings. Specify the appropriate ASCII character set in the DEFINE TRANSACTION command.

This is due to the fact that the gateway assumes that the appropriate user exit in IMS Connect is being used, which would translate between the appropriate ASCII and EBCDIC character sets.

---

1. To verify that the FLIP transaction is installed correctly, log on to your IMS/TM system and enter the following transaction (replacing *FLIP* with the transaction ID you chose for FLIP when you configured your IMS/TM system for the gateway):

   FLIP THIS MESSAGE

   The following output appears on your terminal:

   EGASSEM SIHT PILF

   ---

   **Attention:** If you have not completed the file transfers detailed in Section 10.2 'Preparing to Configure a Gateway Installation' on page 10-2, complete them now, before proceeding to the next step.

   ---

2. From your Windows platform, modify the `pgaims.sql` file, which resides at `%ORACLE_HOME%\pg4appc\demo\IMS\pgaims.sql`. Customize the following three items used for accessing the gateway and the IMS/TM system, as described in the comments at the beginning of the file:

   - the IMS/TM transaction ID
   - the side profile name
   - the logmode entry name
3. Ensure that the TCP/IP communication protocol on your system has been started.
4. Using SQL*Plus, connect to your Oracle Integrating Server from PGAADMIN.
5. Run `pgaims.sql`.
   ```
   C:\> cd %ORACLE_HOME%\pg4appc\demo\IMS
   SQL> @pgaims.sql
   
   The following message appears:
   
   ==> Congratulations, your gateway is communicating with IMS/TM ===
   
   Your IMS/TM installation verification is now complete.
10.9 Performing Post-installation Procedures

The following are optional steps that you can perform as necessary. Installation of the sample applications for your OLTP is recommended to help you to fully understand how the gateway works and how it interfaces with your OLTP.

10.9.1 Installing Sample Applications

Your Oracle Procedural Gateway for APPC featuring TCP/IP for IMS Connect contains sample PL/SQL procedures and OLTP transaction programs that demonstrate the gateway’s capabilities.

**Note:** When you are calling a gateway that is using TCP/IP as the communication protocol, and you are using EBCDIC as the language in the control files, then you must change the language from EBCDIC to ASCII. Some examples of control files that may be in EBCDIC language are ivtno.ctl and ivtnv.ctl.

For more information, refer to the %ORACLE_HOME%\pg4appc\demo\IMS\ivtno.ctl and %ORACLE_HOME%\pg4appc\demo\IMS\ivtnv.ctl files.

Samples are provided for IMS/TM:

- IMS inquiry using IVTNO and IVTNV sample transactions

Additional samples are added to the distribution media in later releases of the product. Wherever possible, the sample applications use the sample databases provided with the database products.

For this release, full documentation on installing and using the sample applications is available in the README.doc files in the following directory:

%ORACLE_HOME%\pg4appc\demo\IMS
The gateway architecture involves multiple systems, database servers, and communications facilities, each having distinct security capabilities and limitations. To effectively plan and implement your security scheme, you must understand these capabilities and limitations, in addition to knowing your installation’s security requirements.

Read this chapter to learn about the capabilities and limitations of the Oracle Procedural Gateway for APPC. This chapter contains the following sections:

- "Overview of Security Requirements" on page 11-2
- "Authenticating Application Logons" on page 11-2
- "Defining and Controlling Database Links" on page 11-3
- "Using SNA Security Validation" on page 11-4
- "TCP/IP Security" on page 11-5
- "Passwords in the Gateway Initialization File" on page 11-7
11.1 Overview of Security Requirements

Before implementing your security scheme, you must understand the existing security requirements and expectations in your environment. Because you are enabling application access to different databases on different systems, you must merge multiple security cultures. When developing your security scheme, the most stringent security requirements prevail. When you connect several different systems into an operating whole, the system with the strictest security requirements generally dictates what the other systems can and cannot do.

Gateway security includes two main concerns:

- users and applications that are permitted access to a particular gateway instance and OLTP
- OLTP transactions that users and applications are able to execute

You can control access at several points in the gateway architecture. The primary options are discussed in the following sections. Control over remote transaction program access is provided by each OLTP with native authorization mechanisms based on user ID. These facilities are described in the product documentation for your OLTP. Information in this chapter includes how the gateway facilities determine the user ID that is in effect for a particular OLTP connection.

When the gateway is involved in an RPC request, security mechanisms are in effect for each system component encountered by the gateway. The first system component that is encountered is the application tool or 3GL program. The last system component that is encountered is the OLTP.

Each of the following sections identifies the component and the type of security processing that is available in that component. Each section offers a summary of key features and parameters. Refer to product-specific documentation for detailed information about the non-gateway components for Oracle and non-Oracle products.

11.2 Authenticating Application Logons

An application must connect to an Oracle Integrating Server before using that gateway. The type of logon authentication that you use determines the resulting Oracle user ID and can affect gateway operation.

Two basic types of authentication are available:

1. Oracle authentication.

   With Oracle authentication, each Oracle user ID has an associated password that is known to Oracle. When an application connects to the server, it supplies a user ID and password. Oracle confirms that the user ID exists and that the password matches the one stored in the database.

2. Operating system authentication.

   With operating system authentication, the server’s underlying operating system is responsible for authentication. An Oracle user ID that is created with the IDENTIFIED EXTERNALLY attribute (instead of a password) is accessed with operating system authentication. To log on to such a user ID, the application supplies a forward slash (/) for a user ID and does not supply a password.

   To perform operating system authentication, the server determines the requester’s operating system user ID, optionally adds a fixed prefix to it, and uses the result as the Oracle user ID. The server confirms that the user ID exists and is IDENTIFIED
Externally, but no password checking is done. The underlying assumption is that users were authenticated when they logged on to the operating system.

Operating system authentication is not available on all platforms and is not available in some Oracle Net (client-server) and multi-threaded server configurations. Refer to your Windows Oracle server documentation and Oracle Net Services Administrator’s Guide to determine the availability of this feature in your configuration.

For more information about authenticating application logons, refer to the Oracle Database Administrator’s Guide.

11.3 Defining and Controlling Database Links

The following sections discuss database links for users of the gateway employing either TCP/IP or SNA communications protocols.

11.3.1 Link Accessibility

The first point of control for a database link is simply whether it is accessible to a given user. A public database link can be used by any user ID. A private database link can be used only by the user who created it. Database link usability is determined by its ability to open a session to the gateway. The Oracle Integrating Server makes no distinction as to the type of use (such as read-only versus update or write) or which remote objects can be accessed. These distinctions are the responsibility of the OLTP that is accessed.

11.3.2 Links and CONNECT Clauses

The CONNECT clause is another security-related attribute of a database link. You can use the CONNECT clause to specify an explicit user ID and password, which can differ from the user’s Oracle user ID and password. This CONNECT user ID and password combination is sent to the gateway when the database link connection is first opened. Depending on gateway-specific options, the gateway might send that user ID and password to the OLTP to be validated.

If a database link is created without a CONNECT clause using Oracle authentication, then the user’s Oracle user ID and password are sent to the gateway when the connection is opened. If the user logs on to the Oracle Integrating Server with operating system authentication, then the gateway receives no user ID or password from the Oracle Integrating Server. It is impossible for operating system-authenticated Oracle users to use a gateway database link defined without a CONNECT clause. However, if your OLTP provides user ID mapping facilities based on the gateway LU name from which the user is connecting, then such a connection is possible if all users on the same gateway instance can use the same OLTP user ID.

For more information about database links, refer to the Oracle Database Administrator’s Guide.
11.4 Using SNA Security Validation

The information in this section applies only to the security needs of gateway users employing the SNA communications protocol. When an RPC request to start a remote transaction program is received by the gateway, the gateway attempts to start an APPC conversation with the OLTP. Before the conversation can begin, a session must start between Windows’ Logical Unit (LU) and the OLTP LU.

APPC support for your Windows platform is provided by the SNA Server (Microsoft Host Integration Server or IBM Communication Server v6.1.1 or higher).

SNA and its various access method implementations, including VTAM and the SNA Server, provide security validation at session initiation time, allowing each LU to authenticate its partner. This validation is carried out entirely by network software before the gateway and OLTP application programs begin their conversation and process conversation-level security data. If session-level security is used, then correct password information must be established in Microsoft Windows’ SNA profiles and in similar parameter structures in the OLTP to be accessed. Refer to the appropriate communications software product documentation for detailed information about this subject.

11.4.1 Specifying SNA Conversation Security

The PGA_SECURITY_TYPE parameter of the gateway initialization file allows you to specify either of three options that determine the security conduct of the LU6.2 conversation that is allocated with the OLTP. These options are part of the SNA LU6.2 architecture, but their precise behavior might vary depending on the particular OLTP system.

11.4.1.1 SNA Security Option SECURITY=NONE

If you specify PGA_SECURITY_TYPE=NONE, then the gateway performs no processing of the client user ID and password. The conversation is allocated with SNA option SECURITY=NONE.

11.4.1.2 SNA Security Option SECURITY=PROGRAM

If you specify PGA_SECURITY_TYPE=PROGRAM, then the gateway allocates the conversation with SNA option SECURITY=PROGRAM, and the following information is sent to the OLTP:

- If the TIP user ID and password overrides are used, then the specified user ID and password are sent regardless of the database link specification.
- If the database link has explicit CONNECT information, then the specified user ID and password are sent.
- If the database link has no CONNECT clause, and if the application logged on to Oracle with an explicit user ID and password, then the Oracle user ID and password are sent.
- If the application logs on to Oracle with operating system authentication, and if the database link lacks explicit CONNECT information, then no user ID and password are sent. If no user ID and password are sent, and if the OLTP is not configured to assign a default user ID, then the connection fails.

In general, SNA option SECURITY=PROGRAM tells the OLTP to authenticate the user ID/password combination using whatever authentication mechanisms are available. For example, if CICS Transaction Server for z/OS is the OLTP, then RACF
can be used. This is not always the case, however, because each OLTP can be configured to process inbound user IDs in other ways.

11.5 TCP/IP Security

The security information in this section applies only to users of the Oracle Procedural Gateway for APPC using the TCP/IP for IMS Connect feature. When an RPC request to start a remote transaction program is received by the gateway, the gateway attempts to start the TCP/IP conversation with IMS Connect. IMS Connect would contact the OLTP (IMS) through OTMA and XCF. Refer to the IBM IMS Connect Guide and Reference for more information. The conversation between the gateway and IMS Connect occurs when the network uses the TCP/IP address or host name and port number to connect from the gateway to IMS Connect.

Note: Since the gateway is using PGAU to generate TIPs, the TIPs contain SNA information. When using the Oracle Procedural Gateway for APPC with TCP/IP support for IMS Connect, you need to map the SNA names to the TCP/IP host name and port number in order for the gateway to talk to IMS Connect. Use the pg4tcpmap tool to map the information from SNA to TCP/IP. Refer to Chapter 6, "pg4tcpmap Commands," of the Oracle Procedural Gateway for APPC User's Guide for more information.

IMS Connect provides validation at session initiation time, allowing each connection to authenticate its partner. This validation is carried out entirely by network software before the gateway and OLTP application programs at IMS begin their conversation and process conversation-level security data. If session-level security is used, then correct password information must be established in Microsoft Windows and in similar parameter structures in the OLTP to be accessed.

11.5.1 Specifying TCP/IP Conversation Security

The PGA_SECURITY_TYPE parameter of the gateway initialization file allows you to specify the security conduct for the conversation that is allocated by the gateway for OLTP. Refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol".

11.5.1.1 TCP/IP Security Option SECURITY=NONE

If you specify PGA_SECURITY_TYPE=NONE, then the gateway performs no processing of the client user ID and password.

11.5.1.2 TCP/IP Security Option SECURITY=PROGRAM

If you specify PGA_SECURITY_TYPE=PROGRAM, then the following information is sent to the OLTP:

- If the TIP user ID and password overrides are used, then the specified user ID and password are sent regardless of the database link specification.
- If the database link has explicit CONNECT information, then the specified user ID and password are sent.
- If the database link has no CONNECT clause, and if the application logged on to Oracle with an explicit user ID and password, then the Oracle user ID and password are sent.
If the application logs on to Oracle with operating system authentication, and if the database link lacks explicit CONNECT information, then no user ID and password are sent. If no user ID and password are sent, and if the OLTP is not configured to assign a default user ID, then the connection fails.

RACF is the only authentication mechanism available when the Oracle Procedural Gateway for APPC using TCP/IP for IMS Connect talks to IMS Connect.

---

**Important:** You must specify your RACF group name through the pg4tcpmap tool if you have set your PGA security option to SECURITY=PROGRAM. For more information about this issue, refer to the *Oracle Procedural Gateway for APPC User’s Guide*. 
---
11.6 Passwords in the Gateway Initialization File

The Oracle Procedural Gateway for APPC uses user IDs and passwords to access the information on the remote database on the gateway server.

For functions to be handled correctly, some user IDs and passwords must be defined in the gateway initialization file. (For an example, refer to the PGA_LOG_PASS parameter in Appendix A or PGA_TCP_PASS parameter in Appendix B.) Because it is not secure to have plain-text passwords accessible in the initialization file, a new encryption feature, pg4pwd, has been added to the gateway. With this feature, passwords are no longer stored in the initialization file but are stored instead in an encrypted form in the password file, making the information more secure. The pg4pwd utility is an optional feature, but Oracle strongly recommends that you use it. The following section describes how to use it.

---

**Note:** The gateway initialization file, regardless of protocol, can hold one or many password parameters. The pg4pwd utility will encrypt all of the passwords that are mentioned in this file if they are written in the following format:

```plaintext
SET PRIVATE PGA_LOG_PASS=*  
```

---

11.6.1 Using the pg4pwd Utility

This section applies to users of the gateway whether your communications protocol is TCP/IP or SNA. The pg4pwd utility encrypts passwords that are normally stored in the gateway initialization file. The pg4pwd utility searches the initialization file for parameters with an asterisk, *. The asterisk denotes that the parameter value is stored in encrypted form in another file. The following is a sample section of the initialization file with this value:

```plaintext
SET PRIVATE PGA_LOG_PASS=*  
```

To use the pg4pwd utility:

1. Edit the initialization file to set the parameter value to *.
2. Run the pg4pwd utility, specifying the gateway SID on the command line. The utility reads the initialization file, and prompts you to enter the values to be encrypted.

   The syntax of the command, where `gateway_sid` is the SID of the gateway, is:

   ```plaintext
   C:\> pg4pwd gateway_sid  
   
   ORACLE Gateway Password Utility (pg4appc)  
   Constructing password file for Gateway SID PGA  
   Enter the value for PGA_LOG_PASS  
   pgaadmin  
   
   In the preceding example, the PGA_LOG_PASS parameter is identified as requiring encryption. The user enters the value, pgaadmin, and presses enter. If there are more parameters requiring encryption, they are prompted for in turn. The encrypted data is stored in the `%ORACLE_HOME%\pg4appc\admin\init<sid>.pwd` file.
**Note:** It is important that the ORACLE_HOME environment variable points to the gateway Oracle home directory to ensure that the correct gateway initialization file is read.
Migration From Existing Gateways

Migrating to new instances of the Oracle Procedural Gateway for APPC from an existing installation is straightforward, provided you follow some guidelines. This chapter provides information to make these new installations as easy as possible. It also provides the parameters you will need if you are using the TCP/IP for IMS Connect communication protocol on your gateway.

This chapter provides information that is specific to this release of the Oracle Procedural Gateway for APPC for Microsoft Windows. It contains the following sections:

- "Backout Considerations When Migrating to New Releases" on page 12-2
- "Parameter Changes: Version 4 to Release 10.1.0.2.0 of the Gateway" on page 12-3
- "Parameter Changes: Version 8 or Earlier to Gateway Release 10.1.0.2.0" on page 12-5
- "Migrating from an Existing Gateway Using SNA to TCP/IP" on page 12-5
12.1 Migrating An Existing Gateway Instance to New Release Using SNA Protocol

Follow these steps to migrate an existing gateway to Release 10.1.0.2.0 of the gateway using the SNA communication protocol.

Note that if you are using the gateway’s TCP/IP support for IMS Connect, you will not be "migrating" an existing release to the current release of the gateway. However, you will need to place valid Heterogeneous Services parameters into your init$sid.ora file. Proceed to "Parameter Changes: Version 4 to Release 10.1.0.2.0 of the Gateway" on page 12-3.

12.1.1 Step 1: Install the New Release

Install the new release of the gateway in a separate directory as outlined in Chapter 4, "Installing the Gateway".

Caution: Do not install the gateway over a previously existing gateway installation. Doing so will corrupt the existing installation.

12.1.2 Step 2: Transfer init$sid.ora Gateway Initialization File Parameters

Copy the init$sid.ora file from the old gateway instance to the new instance.

Note that if you are migrating from Release 9.0.1 or earlier of the gateway, PGA_TRACE is not supported; you will need to modify the parameter to TRACE_LEVEL, instead.

Note: If you are using TRACE_LEVEL, you must set the path for the LOG_DESTINATION parameter.

12.1.3 Backout Considerations When Migrating to New Releases

Oracle recommends that you keep the old gateway Oracle home directory and instance configurations intact and operational when you are installing a new release of the gateway and upgrading existing instances, in case there are problems with the upgrade. This will help ensure minimal downtime between changes to different gateway instances.

12.1.4 Oracle Net Considerations

The Oracle Procedural Gateway for APPC uses the Heterogeneous Services (HS) facilities of Oracle and Oracle Net. If you are upgrading from a version 4 gateway, then you need to slightly modify the gateway service name entries in the tnsnames.ora file. Add an (HS=) clause to tell Oracle Net that the gateway uses HS facilities. For more information, refer to "Configuring the Oracle Network for the Gateway" on page 5-2.
12.1.5 Parameter Changes: Version 4 to Release 10.1.0.2.0 of the Gateway

This release of the Oracle Procedural Gateway for APPC introduces new and changed initialization parameters if you are migrating from a Version 4 gateway to Release 10.1.0.2.0 of the gateway.

Note: This section does not apply to you if you are migrating to Release 10.1.0.2.0 from Version 8 of the Oracle Procedural Gateway for APPC.

If you are using the gateway’s TCP/IP support for IMS Connect, you will not be "migrating" from Version 4 to the current release of the gateway. However, you will need to place valid Heterogeneous Services parameters into your initsid.ora file. This chapter contains references to the particular HS parameters you need to run the gateway.

Note: Refer to the Oracle Connectivity Guide for a complete list and descriptions of all HS parameters used in Oracle products.

New Gateway Initialization Parameters

The following parameters are in the gateway initialization file (initsid.ora):

- FDS_CLASS
- FDS_INSTANCE
- HS_FDS_FETCH_ROWS
- LOG_DESTINATION
- TRACE_LEVEL
- PGA_TCP_DB (TCP/IP only)
- PGA_TCP_USER (TCP/IP only)
- PGA_TCP_PASS (TCP/IP only)

Note: The "HS_" parameters are specific to Oracle Heterogeneous Services. For details on HS parameters, refer to the Oracle Database Administrator’s Guide.
Renamed Gateway Initialization File Parameters

Following is a list of the gateway initialization file (`init[sid].ora`) parameters that have been renamed in this release of the gateway; the parameters’ former names are shown in parentheses.

- HS_COMMIT_STRENGTH_POINT (formerly COMMIT_STRENGTH_POINT)
- HS_DB_DOMAIN (formerly DB_DOMAIN)
- HS_DB_INTERNAL_NAME (formerly DB_INTERNAL_NAME)
- HS_DB_NAME (formerly DB_NAME)
- HS_DESCRIBE_CACHE_HWM (formerly DESCRIBE_CACHE_HWM)
- HS_LANGUAGE (formerly LANGUAGE)
- HS_NLS_DATE_FORMAT (formerly NLS_DATE_FORMAT)
- HS_NLS_DATE_LANGUAGE (formerly NLS_DATE_LANGUAGE)
- HS_OPEN_CURSORS (formerly OPEN_CURSORS)
- HS_ROWID_CACHE_SIZE (formerly ROWID_CACHE_SIZE)

Obsolete Parameters

The following parameters are now obsolete. Please remove them from your configuration files:

- MODE
- SERVER_PATH
- ERROR_LOGGING
- ERROR_REPORTING
- ERRORTAG
- GATEWAY_SID
- GROUP_BY_OFF
- GTWDEBUG
- INCREMENT_CURSORS
- INIT_CURSORS
- LIST
- MAX_LOG_SIZE
- OPTIMIZE_FILE_OPEN
- ORDER_BY_OFF
- RESOLVE_BINDS
- RETRY
- SET
- SNMP_SUPPORT
- SQL_TRACE
- TRIM_CURSORS
- D_OPEN_CURSORS
12.1.6 Parameter Changes: Version 8 or Earlier to Gateway Release 10.1.0.2.0

The following startup shell script parameter must be added to `initsid.ora` if you are migrating from a Version 4 or Version 8 gateway to Release 10.1.0.2.0 of the Oracle Procedural Gateway for APPC:

- `FDS_CLASS_VERSION`

12.1.7 Migrating from Gateway Release 9.0.1 or 9.2.0 to Gateway Release 10.1.0.2.0

No new parameters were added between release 9.0.1 and this release of the gateway.

12.2 Migrating from an Existing Gateway Using SNA to TCP/IP

The following sections are for users who have an existing release of the gateway using the SNA protocol, but who wish to switch to using TCP/IP support for IMS Connect. The TCP/IP support for IMS Connect feature in this release of the gateway allows you to continue to use existing TIPs.

12.2.1 To Use Existing TIPs with Existing SideProfile Definitions

Follow these instructions:

1. Make sure you have used the `pg4tcpmap` tool to insert valid parameter values into the `PGA_TCP_IMSC` table. Refer to Chapter 10, "Gateway Configuration Using TCP/IP Communication Protocol" for instructions on loading the `PGA_TCP_IMSC` table.

2. Make sure the `LANGUAGE` in your TIPs is set to `american_america_us7ascii`.

3. Use PGAU to regenerate the IMS TIPs.

4. Add the following new TCP/IP parameters to the `initsid.ora` file:
   - `PGA_TCP_DB`
   - `PGA_TCP_USER`
   - `PGA_TCP_PASS`

You will find descriptions and information about adding these parameters in Section 12.1.5, "Parameter Changes: Version 4 to Release 10.1.0.2.0 of the Gateway" on page 12-3. You will also find descriptions of the parameters in Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol".
To Use Existing TIPs with LU/TP/LOGMODE Names

The new TCP/IP support for IMS Connect feature of the gateway only supports SideProfile Name coding in the IMS TIPs. If you have been using SNA on a gateway using LU/TP/LOGMODE combinations, the following steps must be taken:

1. Edit the IMS TIPs; create an 8 character, unique identifier and insert it into the TIP as the SideProfile.
   This identifier does not need to be a system-defined SNA SideProfile Name; it is simply a unique name.

2. Make sure you have used the pg4tcpmap tool to insert the SideProfile name into the PGA_TCP_IMSC table.
   Refer to Chapter 10, "Gateway Configuration Using TCP/IP Communication Protocol" for instructions on loading the PGA_TCP_IMSC table.

3. Make sure the LANGUAGE in your TIPs is set to american_america_us7ascii.

4. Use PGAU to regenerate the IMS TIPs.

5. Add the following new TCP/IP parameters to the initSID.ora file:
   - PGA_TCP_DB
   - PGA_TCP_USER
   - PGA_TCP_PASS

You will find descriptions and information about adding these parameters in Section 12.1.5, "Parameter Changes: Version 4 to Release 10.1.0.2.0 of the Gateway" on page 12-3. You will also find descriptions of the parameters in Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol".

Note: TIPS must be recompiled when changing communication protocol from SNA to TCP/IP.

If you have existing TIPs that were generated previously on a gateway using the SNA protocol and you want to utilize the new TCP/IP feature, then the TIPs will have to be regenerated by PGAU with mandatory NLS_LANGUAGE and Side Profile Settings. Specify the appropriate ASCII character set in the DEFINE TRANSACTION command.

This is due to the fact that the gateway assumes that the appropriate user exit in IMS Connect is being used, which would translate between the appropriate ASCII and EBCDIC character sets.
This appendix describes the gateway initialization file location and lists the gateway initialization parameters supported by the Oracle Procedural Gateway for APPC specifically for the SNA protocol. These parameters are fully documented in Section 12.1, "Migrating An Existing Gateway Instance to New Release Using SNA Protocol" on page 12-2. In addition, this appendix contains sample listener.ora and tnsnames files for a gateway using SNA.

This appendix contains the following sections:

- "Gateway Initialization Parameter File Using SNA Protocol" on page A-2
- "PGA Parameters" on page A-2
- "Sample listener.ora file for a Gateway using SNA" on page A-7
- "Sample tnsnames.ora file for a Gateway using SNA" on page A-7
A.1 Gateway Initialization Parameter File Using SNA Protocol

The parameter file for the gateway is located in the 
\%ORACLE_HOME\%\pg4appc\admin directory and is called init\sid.ora.

---

**Note:** The init\sid.ora file contains both SNA and TCP/IP parameters. You must modify these files with the appropriate parameters.

---

A.1.1 PGA Parameters

The PGA parameters control the APPC interface portion of the gateway.

PGA parameters are specified using the SET gateway initialization parameter. For example:

\`SET pga_parm=value\`

where:

- `pga_parm` is one of the PGA parameter names in the list that follows; and
- `value` is a character string with contents that depend on `pga_parm`

Table A–1 provides a list of PGA parameters and their descriptions.

---

**Table A–1 PGA Parameters for Gateway Using SNA**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG_DESTINATION=logpath</td>
<td>logpath specifies the destination at which STDERR is reopened. LOG_DESTINATION specifies a directory only and stderr is reopened to logpath\sid_pid.log</td>
</tr>
<tr>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA_CAPABILITY</td>
<td>PGA transaction capability. This controls whether updates are allowed through the gateway. The following are valid values:</td>
</tr>
<tr>
<td></td>
<td>READ_ONLY or RO - read-only capabilities.</td>
</tr>
<tr>
<td></td>
<td>SINGLE_SITE or SS - single-site update only. This indicates that in a distributed environment, only the gateway can perform updates. No other database updates can occur within the Oracle transaction.</td>
</tr>
<tr>
<td></td>
<td>COMMIT_CONFIRM or CC - commit-confirm. This indicates that in a distributed environment, updates can be performed by both the gateway and other participants within the Oracle transaction. The gateway is always committed first in this mode, and no other commit-confirm sites are allowed to participate in the Oracle transaction.</td>
</tr>
<tr>
<td></td>
<td>The default is SINGLE_SITE.</td>
</tr>
</tbody>
</table>

---
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| PGA_CONFIRM      | Incoming APPC CONFIRM request handling option. This controls what the gateway does when an APPC CONFIRM request is received from the remote transaction program. This parameter has meaning only when the conversation is running with SYNCELEVEL > 0. The following are valid values:  
|                  | ACCEPT - respond to incoming APPC CONFIRM requests with APPC CONFIRMED responses.                                                                |
|                  | REJECT - treat incoming APPC CONFIRM requests as errors causing the conversation to be de-allocated and an error message to be issued.         |
|                  | The default is REJECT.                                                                                                                        |
| PGA_LOG_DB       | The Oracle Net service name for the Oracle server in which the gateway maintains its transaction log. This parameter can be from 1 to 255 characters long. This parameter is required only when PGA_CAPABILITY is set to COMMIT_CONFIRM. There is no default value. |
| PGA_LOG_PASS     | The Oracle password to be used by the gateway when connecting to the Oracle server specified by the PGA_LOG_DB parameter. The password can be from 1 to 30 characters long. This parameter is required only when PGA_CAPABILITY is set to COMMIT_CONFIRM. The password can be encrypted. For more information about encrypting the password, refer to “Using the pg4pwd Utility” on page 11-7. There is no default value. |
| PGA_LOG_USER     | The Oracle user ID to be used by the gateway when connecting to the Oracle server specified by the PGA_LOG_DB parameter. The user ID can be from 1 to 30 characters long. This parameter is required only when PGA_CAPABILITY is set to COMMIT_CONFIRM. There is no default value. |
| PGA_RECOVERY_PASS| The password to be used by the gateway when allocating an APPC conversation with the transaction specified by the PGA_RECOVERY_TPNAM parameter. The password can be from 1 to 8 characters long. This parameter is required only when PGA_CAPABILITY is set to COMMIT_CONFIRM and PGA_SECURITY_TYPE is set to PROGRAM. The password can be encrypted. For more information about encrypting the password, refer to “Using the pg4pwd Utility” on page 11-7. There is no default value. |
| PGA_RECOVERY_TPNAM| The TP name of the transaction installed in the OLTP for commit-confirm FORGET and RECOVERY processing. The TP name can be from 1 to 64 characters long. For CICS Transaction Server for z/OS, the TP name is limited to 4 characters. For IMS/TM, the TP name is limited to 8 characters. Other OLTPs might have other limits on the length of the TP name. This parameter is required only when PGA_CAPABILITY is set to COMMIT_CONFIRM. The default value is RECO. |
When choosing a setting for the PGA_CAPABILITY parameter, take care to ensure that the correct setting is used based on what the remote transaction programs will be doing.

The READ_ONLY setting should always be used when the remote transaction programs are read-only, that is, when the remote transaction programs perform no database updates. READ_ONLY should never be used when the remote transaction programs perform database updates. For example, if the READ_ONLY setting is chosen, and if a remote transaction program invoked by the gateway performs updates to a foreign database, then the Oracle Integrating Server does not provide any integrity protection for those updates. Furthermore, READ_ONLY mode allows a gateway transaction to be part of a distributed transaction that might update several other databases. If the gateway invokes a remote transaction program that performs updates in this situation, and if a failure occurs, then the database updated by the remote transaction program is out of sync with the other databases.

In cases where the remote transaction programs perform updates to foreign databases, there are two options for PGA_CAPABILITY:

- **SINGLE_SITE**
- **COMMIT_CONFIRM**

Each of these options provides protection against data integrity problems by allowing COMMIT and ROLLBACK requests to be forwarded to the remote transaction program, and by informing the Oracle Integrating Server about the distributed update and recovery capabilities of the gateway. The particular option chosen depends upon the design of the remote transaction programs and upon the capabilities of the OLTP (online transaction processor) where they execute.
If the OLTP has LU6.2 SYNCCLEVEL 1 or 2 support, then the COMMIT_CONFIRM capability provides limited two-phase commit between the Oracle Integrating Server and the OLTP, with the restriction that no other commit-confirm site (gateway or Oracle) can be part of the distributed transaction. If it is not possible to use COMMIT_CONFIRM, then the SINGLE_SITE capability provides update capability between the Oracle Integrating Server and the OLTP, with the restriction that only the OLTP can perform updates, and no updates can occur on the Oracle side.

Each of the PGA_CAPABILITY options for update control imposes specific requirements on the remote transaction program and on the OLTP. For COMMIT_CONFIRM capability, these requirements are discussed in detail in Chapter 5, “Implementing Commit-Confirm,” of the Oracle Procedural Gateway for APPC User’s Guide. Also refer to Section 9.8.3, “Configuring the OLTP for Commit-Confirm” on page 9-15 in this guide. For SINGLE_SITE capability, the remote transaction program is responsible for performing the appropriate tasks in response to COMMIT and ROLLBACK requests received from the gateway on behalf of the Oracle Integrating Server. The gateway uses the APPC CONFIRM and SEND_ERR requests to implement COMMIT and ROLLBACK, respectively. Upon receipt of a CONFIRM, the remote transaction program must perform COMMIT processing and then respond to the gateway with an APPC CONFIRMED response. Upon receipt of a SEND_ERR, the remote transaction program must perform ROLLBACK processing.

Because the distributed transaction capability of the Oracle Integrating Server is affected by the PGA_CAPABILITY option used by the gateway, it is desirable to separate inquiry and update applications by using different gateway instances for each. One gateway can be defined with PGA_CAPABILITY set to READ_ONLY and others with PGA_CAPABILITY set to SINGLE_SITE or COMMIT_CONFIRM.

This allows read-only transaction programs to participate in distributed transactions under the control of the Oracle Integrating Server. For example, data from DB2 can be retrieved through the READ_ONLY gateway by an inquiry-only remote transaction program, and can then be used as input to database updates on the Oracle Integrating Server, all in one Oracle transaction. A SINGLE_SITE gateway can be used only for accessing remote transaction programs which perform updates to foreign databases outside the scope of the Oracle Integrating Server’s control. Data can be read from any databases accessible to the Oracle Integrating Server, and that data can be used to perform updates through the gateway.

When it is necessary to update resources on both the Oracle side and the OLTP side, a COMMIT_CONFIRM gateway can be used, provided that the OLTP and the remote transaction programs are set up to implement commit-confirm.

All that is necessary to set up multiple gateway instances is to set up the following for each instance:

- an entry in the listener.ora file defining the sid of the gateway instance
- an entry in the tnsnames.ora file defining an alias to be used to connect to the gateway instance defined in listener.ora
- a database link in the Oracle Integrating Server that specifies the alias defined in the tnsnames.ora file in its USING parameter.

Note that the gateway instances can share one common directory structure, and use the same executables.
For example, to set up two gateways, PGAI and PGAU (for inquiry and update use, respectively) the following steps are required:

1. Define entries in `listener.ora` for two `sid`s, PGAI and PGAU.
2. Define two aliases in `tnsnames.ora` that connect to the two new `sid`s, PGAI and PGAU.
3. Define two database links in the Oracle Integrating Server, one connecting to PGAI and the other connecting to PGAU.
4. Finally, create the initialization files `initPGAI.ora` and `initPGAU.ora`.
   In `initPGAI.ora`, set `PGA_CAPABILITY` to `READ_ONLY`, and in `initPGAU.ora`, set `PGA_CAPABILITY` to `SINGLE_SITE` or `COMMIT_CONFIRM`. Then, use the PGAI gateway for inquiry-only transactions, and use the PGAU gateway for update transactions.

The same steps can be used to set up additional gateway instances.

### A.1.3 PGA_CONFIRM Parameter Considerations

When deciding upon the setting for the `PGA_CONFIRM` parameter, it is important to understand the effects of each setting. First, keep in mind that this parameter affects only those conversations running at `SYNCLEVEL 1`. The default setting, `PGA_CONFIRM=REJECT`, is appropriate for most applications. With this setting, the gateway generates an error if a CONFIRM request is received from the remote transaction program. If you have a remote transaction that uses CONFIRM to verify that data was received by the gateway, then you must use `PGA_CONFIRM=ACCEPT` to allow the gateway to respond to those incoming CONFIRM requests with CONFIRMED responses. You must be aware that the gateway sends CONFIRM requests to the remote transaction when the Oracle application has issued a COMMIT. In order for the COMMIT processing to work correctly, the remote transaction must be written to perform its local commit processing whenever a CONFIRM request is received from the gateway, and respond to the gateway with CONFIRMED after the commit processing has successfully completed. If an error occurs during commit processing, then the remote transaction must respond to the gateway with SEND_ERR to indicate that the commit failed.

One special case for the use of `PGA_CONFIRM=ACCEPT` is with IMS/TM version 7. When using the "implied APPC" support that is provided by IMS/TM version 7, conversations that run at `SYNCLEVEL 1` are handled differently than conversations that run at `SYNCLEVEL 0`. IMS/TM automatically generates CONFIRM requests after each APPC SEND when the conversation is at `SYNCLEVEL 1`. On the gateway side, if `PGA_CONFIRM=ACCEPT` is not specified, then the CONFIRM requests sent by IMS/TM result in errors generated by the gateway. Using `PGA_CONFIRM=ACCEPT` alleviates this problem, allowing the gateway to respond to incoming CONFIRM requests with CONFIRMED responses. The only limitation with running this way is that the implied APPC support provided by IMS does not notify the application when a CONFIRM is received from the gateway. This means that the gateway cannot use CONFIRM to implement COMMIT, thereby disabling the use of COMMIT/ROLLBACK to control updates on the IMS side of the conversation.
A.1.4 Sample listener.ora file for a Gateway using SNA

LISTENER =
  (ADDRESS_LIST =
    (ADDRESS=
      (COMMUNITY= TCP.world)
      (Host = bay)
      (PROTOCOL= TCP)
      (Port= 2621)
    )
    (ADDRESS=
      (COMMUNITY= TCP.world)
      (Host = bay)
      (PROTOCOL= TCP)
      (Port= 2623)
    )
  )

SID_LIST_LISTENER =
  (SID_LIST =
    (SID_DESC =
      (SID_NAME = PGA)
      (ORACLE_HOME = C:\oracle\pga\10.0)
      (PROGRAM = pg4asrv)
    )
  )

A.1.5 Sample tnsnames.ora file for a Gateway using SNA

ORA920 =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = bay.us.oracle.com)(PORT = 1521))
    )
    (CONNECT_DATA =
      (SERVER = DEDICATED)
      (SERVICE_NAME = ORA920.bay)
    )
  )

PGA =
  (DESCRIPTION =
    (ADDRESS_LIST =
      (ADDRESS = (PROTOCOL = TCP)(HOST = bay)(PORT = 2621))
    )
    (CONNECT_DATA =
      (SID = PGA)
    )
    (HS = OK)
  )
Gateway Initialization Parameters for TCP/IP Communication Protocol

This appendix lists and describes the parameters needed specifically for a gateway featuring the TCP/IP for IMS Connect communication protocol. It also provides a sample output of the pg4tcpmap tool. In addition, this appendix contains sample listener.ora and tnsnames.ora files for a gateway using TCP/IP. It contains the following sections:

- "Gateway Initialization Parameter File Using TCP/IP" on page B-2
- "Output for pg4tcpmap Tool" on page B-4
- "Sample listener.ora file for a Gateway using TCP/IP" on page B-5
- Sample tnsnames.ora file for a Gateway using TCP/IP on page B-6
B.1 Gateway Initialization Parameter File Using TCP/IP

The parameter file for the Oracle Procedural Gateway for APPC using TCP/IP for IMS Connect is located in the \%ORACLE_HOME\%\pg4appc\admin directory and is called **initsid.ora**.

---

**Note:** The *initsid.ora* file contains both SNA and TCP/IP parameters. You will need to modify these files with the appropriate parameters.

---

B.1.1 PGA Parameters

The PGA parameters control the TCP/IP interface portion of the gateway.

PGA parameters are specified using the SET gateway initialization parameter. For example:

```sql
SET pga_parm=value
```

where:

- **pga_parm** is one of the PGA parameter names in the list that follows
- **value** is a character string with contents that depend on **pga_parm**

**Table B–1** provides a list of PGA parameters and their descriptions.

**Table B–1 PGA Parameters on Gateway Using TCP/IP for IMS Connect**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG_DESTINATION=logpath</td>
<td><em>logpath</em> specifies the destination at which STDERR is reopened. LOG_DESTINATION specifies a directory only and stderr is reopened to <code>logpath\sid_pid.log</code> where:</td>
</tr>
<tr>
<td></td>
<td>- <strong>sid</strong> is the sid name</td>
</tr>
<tr>
<td></td>
<td>- <strong>pid</strong> is the process ID assigned to the gateway</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This parameter will be used for the pg4tcpmap tool when you set your Trace Level to 255. The log file for this tool will reside in the same place as the gateway log file, in <code>pg4tcpmap_sid.log</code>.</td>
</tr>
<tr>
<td>PGA_CAPABILITY</td>
<td>PGA transaction capability. The following are valid values: READ_ONLY or RO - read-only capabilities. SINGLE_SITE or SS - single-site update only. This indicates that in a distributed environment, only the gateway can perform updates. No other database updates can occur within the Oracle transaction. The default is SINGLE_SITE.</td>
</tr>
</tbody>
</table>
Gateway Initialization Parameter File Using TCP/IP

**Table B–1 (Cont.) PGA Parameters on Gateway Using TCP/IP for IMS Connect**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| PGA_SECURITY_TYPE | TCP/IP conversation security option. This controls what security parameters are sent to the OLTP. The following are valid values:  
NONE - which sends no security parameters  
PROGRAM - which sends a user ID and password  
The default is NONE.  
For further information on these options, refer to Chapter 11, "Security Requirements".  
**Important:** You must specify your RACF group name through the pg4tcpmap tool if you have set your PGA security option to SECURITY=PROGRAM. For more information about this issue, refer to the Oracle Procedural Gateway for APPC User’s Guide.  
If you have already loaded the table pga_tcp_imsc and you did not first specify the RACF group name, delete the row and reinsert it with the value for the RACF group name. |
| PGA_TCP_DB       | The Oracle Net service name for the Oracle server in which the gateway receives its TCP/IP for IMS Connect information, such as host name and port number. This parameter can be from 1 to 255 characters long. This parameter is required.  
There is no default value. |
| PGA_TCP_PASS     | The Oracle password to be used by the gateway when connecting to the Oracle server specified by the PGA_TCP_DB parameter. The password can be from 1 to 30 characters long. This parameter is required. The password can be encrypted. For more information about encrypting the password, refer to "Using the pg4pwd Utility" on page 11-7.  
There is no default value. |
| PGA_TCP_USER     | The Oracle user ID to be used by the gateway when connecting to the Oracle server specified by the PGA_TCP_DB parameter. The user ID can be from 1 to 30 characters long. This parameter is required.  
There is no default value. |
| TRACE_LEVEL      | PGA trace level. This controls tracing output written to stderr (the target of the LOG_DESTINATION parameter.) The value must be an integer from 0 to 255.  
The default is 0, indicating no tracing.  
NOTE: This parameter will be used in the pg4tcpmap tool as well as the gateway. |
B.2 Output for pg4tcpmap Tool

The following output illustrates the results from executing the pg4tcpmap tool when running TCP/IP for IMS Connect on the gateway. Refer to Section 10.7, "Loading the PGA_TCP_IMSC Table" on page 10-12 of this guide and to Chapter 6 of the Oracle Procedural Gateway for APPC User’s Guide for detailed information about the function and parameters of the pg4tcpmap tool.

Note that input in this sample is shown within brackets (<>).

C:\oracle\bin\pg4tcpmap

PG4TCPMAP: Release 10.1.0.2.0 - Production on Fri Jun 20 14:57:41 2003

Copyright(c) 1982,2003 Oracle Corporation. All rights reserved.

This tool takes the IMS Connect TCP/IP information, such as host name and port number and maps them to your TIPs.

You may use this tool to insert or delete IMS Connect TCP/IP information.

If you want to insert a row, type I
If you want to delete a row, type D
<i>
Enter the Unique Side Profile.
paimst
Enter either the remote hostname or its TCP/IP address.
<mvs08>
Enter the IMS Connect port number.
<9900>
Do you want to select a Conversational Protocol?(Y|N)
The default is NO, 'no request for acknowledgment or deallocation'
<n>
Enter one of the following letters for Timer.
For .25 second, enter 'D'.
For .01 to .25 second, enter 'S'.
For 'does not set the timer, no wait occurs', enter 'N'.
For Receive waits indefinitely, enter 'I'.
The default is 'D'.
<d>
Enter one of the following letters for 'socket connection type'.
For transaction socket, enter 'T'.
For persistent socket, enter 'P'.
For non-persistent socket, enter 'N'.
The default is 'T'.
<t>
Do you want to enter the client ID name? (Y|N)
If NO, IMS Connect (user exit) will generate it.
<n>
Enter one of the following letters for 'commit mode'.
For Commit Mode set to 0, enter '0'.
For Commit Mode set to 1, enter '1'.
The default is '1'.
<i>
Enter the Datastore name (IMS Destination ID).
The maximum string length is 8 and the Datastore name must be specified.
imse
Do you want to enter the LTERM? (Y|N)
If NO, the default is blank.
<n>
Do you want to enter the RACF group name? (Y|N)
If NO, the default is blank.
<n>
Requested to INSERT a row.
'Side Profile name' is 'PGAIMST'
'remote host name' is 'MVS08'
'IMS Connect port number' is '9900'
'conversational protocol' is ''
'Timer' is 'D'
'socket connection type' is 'T'
'client ID' is '        '
'commit mode' is '1'
'Datastore name (IMS destination ID)' is 'IMSE    '
'IMS LTERM override' is '        '
'RACF group name' is '        '
pg4tcpmap is complete.

B.2.1 Sample listener.ora file for a Gateway using TCP/IP

LISTENER =
  (ADDRESS_LIST =
    (ADDRESS=
      (COMMUNITY= TCP.world)
      (Host = bay)
      (PROTOCOL= TCP)
      (Port= 2621)
    )
    (ADDRESS=
      (COMMUNITY= TCP.world)
      (Host = bay)
      (PROTOCOL= TCP)
      (Port= 2623)
    )
  )

SID_LIST_LISTENER =
  (SID_LIST =
    (SID_DESC =
      (SID_NAME = PGA)
      (ORACLE_HOME = C:\oracle\pga\10.0)
      (PROGRAM = pg4t4ic)
    )
  )
**B.2.2 Sample tnsnames.ora file for a Gateway using TCP/IP**

ORA920 =
   (DESCRIPTION =
    (ADDRESS_LIST =
     (ADDRESS = (PROTOCOL = TCP)(HOST = bay.us.oracle.com)(PORT = 1521))
    )
    (CONNECT_DATA =
     (SERVER = DEDICATED)
     (SERVICE_NAME = ORA920.bay)
    )
   )

PGA =
   (DESCRIPTION =
    (ADDRESS_LIST =
     (ADDRESS = (PROTOCOL = TCP)(HOST = bay)(PORT = 2623))
    )
    (CONNECT_DATA =
     (SID = PGA)
    )
   )
   (HS = OK)
This appendix contains a list of terms and definitions pertaining to the gateway and its components and function.

For a list of other terms and definitions associated with the gateway, refer to Chapter 1 of the *Oracle Procedural Gateway for APPC User’s Guide*.

This appendix contains the following section:

- "Gateway Term Definitions" on page C-2
C.1 Gateway Term Definitions

Following is a list of some of the terms and definitions used in this edition of the *Oracle Procedural Gateway for APPC Installation and Configuration Guide*.

**Gateway Initialization File**

This file is known as *initsid.ora* and it contains parameters that govern the operation of the gateway. If you are using the SNA protocol, refer to Appendix A, "Gateway Initialization Parameters for SNA Protocol" for more information. Refer to Appendix B, "Gateway Initialization Parameters for TCP/IP Communication Protocol" if your protocol is TCP/IP.

**Gateway Remote Procedure**

The Oracle Procedural Gateway for APPC provides prebuilt remote procedures. In general, the following three remote procedures are used:

- **PGAINIT**, which initializes transactions
- **PGAXFER**, which transfers data
- **PGATERM**, which terminates transactions

Refer to "Remote Procedural Call Functions" on page 1-10 in this guide and to Appendix C, "Gateway RPC Interface" in the *Oracle Procedural Gateway for APPC User’s Guide* for more information about gateway remote procedures.

**pg4pwd**

*pg4pwd* is a utility which encrypts passwords that are normally stored in the gateway initialization file. Passwords are stored in an encrypted form in the password file, making the information more secure. Refer to "Passwords in the Gateway Initialization File" on page 11-7 for detailed information about how the *pg4pwd* utility works.

**pg4tcpmap tool**

This gateway mapping tool is applicable only when the gateway is using TCP/IP support for IMS Connect. Its function is to map the Side Profile Name to TCP/IP and IMS Connect attributes into the PGA_TCP_IMSC table.

**PGA (Procedural Gateway Administration)**

PGA is a general reference within this guide to all or most components comprising the Oracle Procedural Gateway for APPC. This term is used when references to a specific product or component are too narrow.

**PGDL (Procedural Gateway Definition Language)**

PGDL is the collection of statements used to define transactions and data to the PGAU.

**PL/SQL Stored Procedure Specification (PL/SQL package)**

This is a precompiled PL/SQL procedure that is stored in Oracle Integrating Server.

**UTL_RAW PL/SQL Package (the UTL_RAW Functions)**

This component of the gateway represents a series of data conversion functions for PL/SQL RAW variables and remote host data. The types of conversions performed depend on the language of the remote host data. Refer to "UTL_RAW Functions" in Appendix D of the *Oracle Procedural Gateway for APPC User’s Guide* for more information.
UTL_PKG PL/SQL Package (the UTL_PKG Functions)
This component of the gateway represents a series of COBOL numeric data conversion functions. Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values" in Appendix D of the Oracle Procedural Gateway for APPC User’s Guide for supported numeric datatype conversions.
Summary of Changes in Previous Versions

This appendix provides a summary of changes in previous versions of the Oracle Procedural Gateway for APPC.

This appendix contains the following sections:

■ “Changes and Enhancements in Previous Versions” on page D-2
■ “Corrected Problems in Previous Versions” on page D-5
■ “Known Restrictions in Previous Releases” on page D-8
D.1 Changes and Enhancements in Previous Versions

The following sections list changes and enhancements that were made to previous releases of the gateway.

D.1.1 Release 9.2.0.1.0

The following section lists changes and enhancements that were made to Release 9.2.0.1.0 of the gateway:

- Oracle Call Interface: Because of changes to the Oracle Call Interface (OCI), Oracle Procedural Gateway for APPC internal codes for calling COMMIT/CONFIRM have changed. This does not affect user functions.


- Password encryption utility for gateway initialization file: This release of the gateway includes a utility to support encryption of plain-text passwords in the gateway initialization file.

D.1.2 Release 9.0.1.1.0

The following section lists changes and enhancements that were made to Release 9.0.1.1.0 of the gateway:

- Release 9.0.1.1.0 of the Oracle Procedural Gateway for APPC requires Oracle9i release 9.0.1.1.0 (Oracle 9i database server 9.0.1) or higher Oracle Integrating Server.

- If you are installing Oracle Procedural Gateway for APPC release 9.0.1.1.0 on the system for the first time, the ORACLE_HOME directory is C:\orant, by default.

D.1.3 Release 9.0.1.0.1

The following section lists changes and enhancements that were made to Release 9.0.1.0.1 of the gateway:

- PGA_TRACE parameter no longer supported: With this release of Oracle Procedural Gateway for APPC, the PGA_TRACE parameter is no longer supported. If you are copying the initsid.ora file from an older version of the gateway, you must remove this parameter.

- FDS_CLASS_VERSION parameter added: You will need to add the FDS_CLASS_VERSION parameter to your startup shell script file (initsid.ora). A default value is specified in initsid.ora.
D.1.4 Release 8.0.6.0.0

The following section lists changes and enhancements that were made to Release 8.0.6.0.0 of the gateway:

- The Oracle Procedural Gateway for APPC does not support Oracle7 server or earlier.

- Heterogeneous Services architecture
  
  This release of Oracle Procedural Gateway for APPC utilizes the Oracle Heterogeneous Services component within the Oracle8 server. Heterogeneous Services is the building block for the next generation of Oracle Open Gateways.

- Performance enhancements
  
  Oracle Procedural Gateway for APPC contains several internal performance enhancements. This product has shown major improvements over the version 4 gateways, particularly in response time and CPU utilization for all relevant address spaces for a variety of workloads. The actual performance improvement at your site may vary, depending on your installation type and workload.

- PL/SQL V3 compatibility
  
  Before Release 8 you had to set the PLSQL_V2_COMPATIBILITY parameter to "TRUE" to compile PGAU80-generated TIP specifications. This is no longer necessary.

- Oracle server dependencies
  
  This release of Oracle Procedural Gateway for APPC requires that the Oracle Integrating Server be an Oracle8 server Release 8.0.6.0.0 or later.

- Gateway initialization parameters
  
  In previous versions of the gateway the initialization parameters were stored in files named `initsid.gtwboot` and `initsid.ora`, both found in the gateway instance directories. With version 8, most parameters that were in `initsid.gtwboot` have been moved to the `initsid.ora` file. The syntax of `initsid.ora` has been simplified.

  When migrating from previous releases of the gateway, be aware of these differences. Refer to "Parameter Changes for Version 4 to Release 9i Migration of Gateway" on page 7-3 for information about these parameters.

- `tnsnames.ora`: The service name definition (from the Oracle Integrating Server to the gateway) must contain an extra parameter, `(HS=(DRIVER))`.

- In this release of the Oracle Procedural Gateway for APPC for Microsoft Windows, the following names have changed:
  
  - `PGAU80.EXE` (known as `PGAU80`) has been changed to `PGAU.EXE` (known as `PGAU`).
  
  - `PG4APPC80.EXE` (known as `PG4APPC80`) has been changed to `PG4APPC.EXE` (known as `PG4APPC`)

  With this release of the Oracle Procedural Gateway for APPC for Microsoft Windows, the gateway no longer runs as a Windows service. The process-based gateway provides faster performance because it does not need a management utility. Instead, each Oracle Integrating Server user session that accesses a particular gateway creates an independent process on Windows that runs the gateway server and executes SNA functions.
Changes and Enhancements in Previous Versions

- GTWSRV.EXE is no longer included

As a result of the process-based gateway, the Oracle Procedural Gateway for APPC package no longer includes the GTWSRV.EXE management utility.

- The process-based gateway removes the restriction of a four-character limit for the SID name. Refer to the Oracle Net Administrator’s Guide for more information about character limits for SID names.

- The GTWCONF.EXE process is no longer included in the Oracle Procedural Gateway for APPC for Windows, beginning with this release.

- Microsoft SNA Server Version 2 is no longer supported with this release of the Oracle Procedural Gateway for APPC for Microsoft Windows.

D.1.5 Release 4.0.1.1.0

The following section lists changes and enhancements that were made to Release 4.0.1.1.0 of the gateway:

- Gateway components now based on Oracle7 Server release 7.3.3

  The gateway components are now built using the Oracle7 server release 7.3.3 product libraries as a base. All product components shipped with the gateway, including SQL*Net, are now at the release 7.3.2 level.

- Gateway supports Oracle8 Server release 8.0.3

  The gateway now supports Oracle8 server release 8.0.3 as an integrating server.

- UTL_PG now shipped with Oracle Server

  The scripts for installing the UTL_PG PL/SQL package are now shipped with the Oracle7 or Oracle8 server and are no longer shipped with the gateway.

- Gateway no longer supports Oracle7 Server release 7.1.6 and 7.2

  The gateway no longer supports Oracle7 server release 7.1.6 and 7.2 as integrating servers.

- User ID and password overrides now supported by gateway (Enh. No. 423300)

  A new TIP override is now available to allow the user ID and password sent by the gateway to the OLTP (online transaction processor) to be specified by the user. For complete information on using this override, refer to "Overriding TIP Initializations" in Chapter 2 of the Oracle Procedural Gateway for APPC User’s Guide.

- New "LENGTH IS" clause supported by PGAU (Enh. No. 428783)

  A new "LENGTH IS" clause in COBOL data definitions is now recognized by PGAU and allows the definition of variable-length character fields without using OCCURS DEPENDING ON. For complete information on using this clause, refer to "Format Conversion" in Appendix G of the Oracle Procedural Gateway for APPC User’s Guide.

- Date/time stamp in trace output

  All trace and debug output from the gateway server now contains a date/time stamp in the beginning of each line.

- Installer improvements: The installer prompts not relevant to the gateway have been eliminated to streamline the installation process.
D.2 Corrected Problems in Previous Versions

The following tables list the numbers and descriptions of each bug fixed in previous releases of the gateway.

D.2.1 Release 9.2.0.1.0

Table D–1 lists the bugs that were fixed in Release 9.2.0.1.0 of the gateway, along with their descriptions:

<table>
<thead>
<tr>
<th>Bug Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1276298</td>
<td>When using an invalid value for receive parameter for the pgaxfer procedure, the user receives an ORA 28511 error message.</td>
</tr>
<tr>
<td>1302253</td>
<td>Oracle Procedural Gateway for APPC procedure statements executed on the Oracle integrating servers would hang in SQL*Plus, without giving any messages.</td>
</tr>
<tr>
<td>1336805</td>
<td>When the PGA_SECURITY_TYPE parameter was set to PROGRAM and the PGA_CAPABILITY parameter was set to COMMIT_CONFIRM, the user received an authentication error but could not see who was complaining about it.</td>
</tr>
<tr>
<td>1404454</td>
<td>The pg4appc log file should be improved and have the received buffer in the log file.</td>
</tr>
<tr>
<td>1411694</td>
<td>The user receives message ORA-28527 when the PGA_CAPABILITY is set to READ_ONLY.</td>
</tr>
<tr>
<td>1472800</td>
<td>Multi-row queries failed on the following error messages: ORA-01401 and ORA-06512.</td>
</tr>
<tr>
<td>1519088</td>
<td>User received sporadic abends when inserting CICS records to VSAM file.</td>
</tr>
<tr>
<td>1677939</td>
<td>Oracle Procedural Gateway for APPC would partially transfer low values to VSAM files.</td>
</tr>
<tr>
<td>1722467</td>
<td>When the PGA_SECURITY_TYPE parameter was set to PROGRAM and the user specified the user ID and password through database link explicit CONNECT information, the query failed with message PGA-20910 RC=6.</td>
</tr>
<tr>
<td>1724988</td>
<td>When the programmer used RPC PGAINIT_SEC, no matter what synchlevel was being used, the following message was received: &quot;invalid SYNCHLEVEL, 152, specified; valid range is 0:1.&quot;</td>
</tr>
<tr>
<td>2092204</td>
<td>When using PGATCTL procedure with specifying the function code as &quot;D&quot;, the user receives the message PGA-20932 with an invalid function code.</td>
</tr>
<tr>
<td>2128785</td>
<td>Oracle Server Heterogeneous Services place unwanted trace files into \tmp directory.</td>
</tr>
</tbody>
</table>
D.2.2 Release 9.0.1.0.1

Table D–2 lists the bugs that were fixed in Release 9.0.1.0.1 of the gateway, along with their descriptions:

<table>
<thead>
<tr>
<th>Bug Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1276298</td>
<td>When using an invalid value for receive parameter for the pgaxfer procedure, the user receives an ORA-28511 error message.</td>
</tr>
<tr>
<td>1302253</td>
<td>Oracle Procedural Gateway for APPC procedure statements executed on the Oracle integrating servers would hang in SQL*Plus, without giving any messages.</td>
</tr>
<tr>
<td>1336805</td>
<td>When the PGA_SECURITY_TYPE parameter was set to PROGRAM and the PGA_CAPABILITY parameter was set to COMMIT_CONFIRM, the user received an authentication error but could not see who was complaining about it.</td>
</tr>
<tr>
<td>1404454</td>
<td>The pg4appc log file should be improved and have the received buffer in the log file.</td>
</tr>
<tr>
<td>1411694</td>
<td>The user receives message ORA-28527 when the PGA_CAPABILITY is set to READ_ONLY.</td>
</tr>
<tr>
<td>1472800</td>
<td>Multi-row queries failed on the following error messages: ORA-01401 and ORA-06512.</td>
</tr>
<tr>
<td>1519088</td>
<td>User received sporadic abends when inserting CICS records to VSAM file.</td>
</tr>
<tr>
<td>1677939</td>
<td>Oracle Procedural Gateway for APPC would partially transfer low values to VSAM files.</td>
</tr>
<tr>
<td>1722467</td>
<td>When the PGA_SECURITY_TYPE parameter was set to PROGRAM and the user specified the user ID and password through database link explicit CONNECT information, the query failed with message PGA-20910 RC=6.</td>
</tr>
<tr>
<td>1724988</td>
<td>When the programmer used RPC PGAINIT_SEC, no matter what syncrev was being used, the following message was received: “invalid SYNCLEVEL, 152, specified; valid range is 0:1.”</td>
</tr>
</tbody>
</table>
D.2.3 Release 8.0.6.0.0

Table D–3 lists the bugs that were fixed in Release 8.0.6.0.0 of the gateway, along with their descriptions:

<table>
<thead>
<tr>
<th>Bug Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1329386</td>
<td>PGAU core dumped on large packages. When users tried to generate large packages with PGAU, they got a core dump.</td>
</tr>
<tr>
<td>561128</td>
<td>The PLSTYPE attribute of binary integers (COBOL COMP data items) had the wrong precision when the data was defined without COMPOPTS(TRUNC(BIN)) specified.</td>
</tr>
<tr>
<td>599696</td>
<td>PGAU COBOL parser did not accept OCCURS clause appearing before datatype as valid syntax.</td>
</tr>
<tr>
<td>603934</td>
<td>When COBOL data definitions contained OCCURS and REDEFINES, the PGAU-generated .pkb file was invalid.</td>
</tr>
<tr>
<td>689304</td>
<td>This bug occurred when a CICS transaction abended between the time that the Oracle server called the gateway to perform a commit and the time that the CICS transaction was successfully committed. When this occurred, the Oracle recovery process (RECO) would call the gateway's recovery function (GTARECO) to resolve the transaction. The GTARECO function mistakenly relayed that it had successfully rolled back the CICS transaction, but in fact it had failed to delete the row from PGA_CC_PENDING.</td>
</tr>
<tr>
<td>883761</td>
<td>System Process - Out of virtual Memory. After hours of service, pg4appc.exe would crash with an access violation. Using Windows Task Manager, customer would see pg4appc.exe growing in memory continuously, until reaching the maximum amount of virtual memory. Then pg4appc.exe crashed with an access violation.</td>
</tr>
</tbody>
</table>

D.2.4 Release 4.0.1.1.0

Table D–4 lists the bugs that were fixed in Release 4.0.1.1.0 of the gateway, along with their descriptions:

<table>
<thead>
<tr>
<th>Bug Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>420391</td>
<td>PGAU generated invalid PL/SQL in the TIP when a COBOL definition contained an OCCURS clause and was defined as an IN OUT parameter. A PLS-103 error was generated when attempting to compile the TIP.</td>
</tr>
<tr>
<td>460960</td>
<td>ORA-9199 errors were generated by the gateway after some gateway exceptions due to a memory overlay.</td>
</tr>
<tr>
<td>473360</td>
<td>PGAU encountered a segment fault when executing a GENERATE command for a transaction with a very large number of fields defined in its COBOL data.</td>
</tr>
<tr>
<td>506777</td>
<td>An ORA-1017 error was generated by the gateway when RECO attempted to log onto the gateway during recovery of a distributed transaction, even though the gateway was running in READ-ONLY mode.</td>
</tr>
<tr>
<td>521084</td>
<td>ORA-3106 errors were generated by the gateway on Windows under heavy transaction load.</td>
</tr>
</tbody>
</table>
D.3 Known Restrictions in Previous Releases

The following section lists restrictions that were known to exist in previous releases of the gateway. A current list of problems is available online at:

http://metalink.oracle.com

If you have problems accessing this online information, then contact Oracle Support Services for assistance.

D.3.1 Release 9.2.0.1.0

No known problems were documented in Release 9.2.0.1.0 of the Oracle Procedural Gateway for APPC.

D.3.2 Release 8.0.6.1.0 and 4.0.1.1.0

The following problems in other products are known to affect the operation of products in this release:

- **UTL_PG Does Not Handle Numeric Data Values Between 0 and +1** (Bug No. 360427)
  The UTL_PG.NUMBER_TO_RAW function erroneously issues messages ORA-08414 and ORA-08467 when converting an Oracle number between 0 and +1 into a COBOL numeric value. Contact Oracle Support Services to order the patch correcting this bug.

- **PGA Grows Excessively When Using Indexed PL/SQL Tables** (Bug No. 373700)
  When TIPs are executed that use large PL/SQL tables, the memory usage grows excessively. Contact Oracle Support Services to order the patch correcting this bug.

- **UTL_PG Does Not Handle Leading or Trailing Signs Correctly for DISPLAY Data** (Bug No. 383510)
  The UTL_PG.RAW_TO_NUMBER and UTL_PG.NUMBER_TO_RAW functions do not handle leading or trailing signs correctly for numeric data defined with USAGE IS DISPLAY. Contact Oracle Support Services to order the patch correcting this bug.
The following worksheet lists the parameter names and the reasons you will need them to configure the gateway and the communications interface you have chosen (either SNA or TCP/IP). Use the worksheet to gather the specific information you need before you begin the configuration process.

Ask your systems administrator to provide you with any parameter names you do not know.

Table E–1 Parameters for Configuring Gateway and Communication Protocols

<table>
<thead>
<tr>
<th>Name of Parameter Needed</th>
<th>Purpose</th>
<th>Your Specific Parameters Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORACLE_HOME</td>
<td>for: gateway’s Oracle Home</td>
<td>____________________________</td>
</tr>
<tr>
<td>ORACLE_SID</td>
<td>for: gateway’s system ID</td>
<td>____________________________</td>
</tr>
<tr>
<td>Any Security Options</td>
<td>for: SNA remote LU properties options</td>
<td>____________________________</td>
</tr>
<tr>
<td>Appropriate Name for Each Side Information Profile</td>
<td>for: SNA creating CPI-C symbolic destination names (side information profiles), general information</td>
<td>____________________________</td>
</tr>
<tr>
<td>Appropriate Mode</td>
<td>for: SNA</td>
<td>____________________________</td>
</tr>
<tr>
<td>TP Name</td>
<td>for: SNA partner information in CPI-C name properties</td>
<td>____________________________</td>
</tr>
<tr>
<td>Partner LU Name Alias</td>
<td>for: SNA partner information in CPI-C name properties</td>
<td>____________________________</td>
</tr>
<tr>
<td>Unique Side Profile Name</td>
<td>for: Configuring TCP/IP support for IMS Connect</td>
<td>____________________________</td>
</tr>
<tr>
<td>Remote Hostname or TCP/IP Address</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td>____________________________</td>
</tr>
<tr>
<td>IP Address</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td>____________________________</td>
</tr>
</tbody>
</table>
**Table E–1 (Cont.) Parameters for Configuring Gateway and Communication Protocols**

<table>
<thead>
<tr>
<th>Name of Parameter Needed</th>
<th>Purpose</th>
<th>Your Specific Parameters Here</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS Connect Port Number</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td></td>
</tr>
<tr>
<td>Conversational Protocol (Y/N)</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td></td>
</tr>
<tr>
<td>Timer choice:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) .25</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td></td>
</tr>
<tr>
<td>b) .01 to .25</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td></td>
</tr>
<tr>
<td>c) Does not exist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Receives wait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socket Connection Type Choice:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) transaction</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td></td>
</tr>
<tr>
<td>b) persistent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) non-persistent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS Client ID Name</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td></td>
</tr>
<tr>
<td>IMS Commit Mode Choice:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMS Destination ID, datastore name</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td></td>
</tr>
<tr>
<td>LTERM</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td></td>
</tr>
<tr>
<td>RACF Group Name</td>
<td>for: Configuring TCP/IP support for IMS Connect, pg4tcpmap tool</td>
<td></td>
</tr>
</tbody>
</table>
Symbols

%ORACLE_HOME%, 8-2, 8-4, 8-6, 8-7, 9-13, 9-19, 9-20, 9-22, 10-11
(HS=) (TNSNAMES parameter for Oracle Net), 5-2
with TCP/IP protocol, 5-2

A

action items
for installing the gateway, 4-6
ALTER USER command, 9-6, 10-5
american_america_us7ascii, 12-5, 12-6
APPCC, 1-2
corresponding security option, A-4, B-3
appcdf.doc file, 8-4
APPCC/MVS
configuring for the gateway, 8-7
installation verification, 9-20
verification of configuration, 9-20
architecture
components of the gateway, 1-7
ASCII
automatic conversion, 1-4
authentication
for operating system, 11-2
for Oracle, 11-2
type, security, 11-2

B

backout possibilities during migration, 12-2
bugs
bypassing a bug in IDMS-DC, 8-4
fixed in previous releases, D-7
fixed in this release, 2-2

C

CDMSLIB DD statement, 8-5
CD-ROM drive requirements, 3-2
changes
in this release, 2-2
release 4.0.1.1.0, D-4
release 9.0.1.0.1, D-2
release 9.2.0.1.0, D-2
CICS, 1-11, 3-4
ATTACHSEC parameter, 6-2
installation verification
on gateway using SNA, 9-17
security options not supported by the
gateway, 6-2
transaction ID, 9-17
verifying configuration
on gateway using SNA, 9-17
CICS Transaction Server for z/OS
authentication mechanism
on all platforms, 11-4
configuring for the gateway, 8-2
OLTP
configuration verification, 9-17
TP name length, A-3
command
SET, 9-13, 10-11
COMMOT, A-4
COMMIT_CONFIRM, A-2, A-5, B-2
and PGA_CAPABILITY parameter, A-4
capability, A-5
commit-confirm, A-5
configuring, 9-14, 9-15
gateway initialization parameters, 9-15
OLTP, 9-15
Oracle server, 9-14
sample applications, 9-21
transaction log, 9-21
COMMOT/ROLLBACK, 3-3
communications
between server, gateway and remote host, 1-9
needed for Windows, 3-3
components
in this release, 2-2
configuration
gateway directories, 10-2
configuration verification
OLTP
on gateway using SNA, 9-16
on gateway using TCP/IP for IMS
Connect, 10-13, 10-14
configuring
APPC/MVS, 8-7
CICS Transaction Server for z/OS, 8-2
commit-confirm, 9-14, 9-15
gateway
optional steps to allow multiple users using SNA, 9-10
optional steps to allow multiple users using TCP/IP for IMS Connect, 10-8
gateway directories, 9-2
IDMS-DC, 8-4
IMS/TM, 8-6
Oracle integrating server, 9-14
upgrading from previous releases, 9-8
Oracle integrating server for gateway using TCP/IP for IMS Connect
pre-configuration steps, 10-2
TCP/IP for IMS Connect, 7-2
on the gateway, 10-11
the gateway
for TCP/IP for IMS Connect, 10-2
using SNA, 9-2
the OLTP, 8-4
your network
using SNA, 5-2
configuring CICS OLTP for Transaction Server, 8-2
configuring your network, 5-2
CONNECT clause, 11-4
doctrine database link security, 11-3
in TCP/IP security, 11-5
connection
definition
SNA Server, 6-7
corrected problems
release 4.0.1.1.0, D-7
release 8.0.6.0.0, D-7
release 9.0.1.0.1, D-6
release 9.2.0.1.0, D-5
CPI-C, 9-22
creating profile in IBM Communications Server, 6-18
creating
public database link, 9-6, 10-5

D
data dictionary
See PG DD
data exchange
PGAXFER function, 1-10
database link, 1-9, A-5
creating, 9-6, 10-5
when configuring integrating server, 9-6, 10-5
dropping, when deinstalling the gateway, 4-9
in configuring the network, 5-2
in verifying gateway installation
on gateway using SNA, 9-16
on gateway using TCP/IP for IMS Connect, 10-13
public and private, 11-3
security, CONNECT clause, 11-3
database link name
modifying .sql files, 9-16, 10-13
datastores
gateway access to, 1-2
DBMS_OUTPUT packages, 9-5, 10-4
DBMS_PIPE, 9-7, 9-10, 10-6, 10-8
definition types
in IBM Communications Server, 6-15
de-installing
the gateway, 4-8
dependent LU, 8-6
See also LUs
DESCRIBE statement, 9-5, 10-4
DBMS_OUTPUT, 9-5, 10-4
UTO_RAW, 9-5, 10-4
describe statement
DBMS_OUTPUT, 10-4
dfhcsdup.jcl file, 8-2
DFHRPL DD statement, 8-2
directories
for installing gateway and OIS files, 9-2, 10-2
disk space requirements, 3-2
DISPLAY datatypes, 2-4

E
EBCDIC language, 1-4
gateway know restrictions pertaining to, 2-4
necessary to change to ASCII when using TCP/IP, 10-14
encryption feature
pg4pwd, on gateway using SNA or TCP/IP, 11-7
enhancements
GTWSRV.EXE no longer included, D-4
in this release, 2-2
release 4.0.1.1.0, D-4
release 9.0.1.0.1, D-2
release 9.2.0.1.0, D-2
using PGAU to automatically upgrade PG DD entries, 9-11, 10-9
error
during commit processing, A-6
obsolete parameters, 12-4
parameter name misspelled, 9-13, 10-11
treating incoming APPC CONFRIM requests as errors, A-3, A-6

F
FDS_CLASS parameter, 12-3
FDS_CLASS_VERSION
parameter added, 12-5
FDS_INSTANCE parameter, 12-3
file
appcdef.doc, 8-4
dfhcsdup.jcl, 8-2
imsgen.asm, 8-6, 8-8
initPGA1.ora, A-6
initPGA.ora, 9-13, 10-11
initPGAU.ora, A-6
initsid.ora, 1-9, 9-13, 9-15, 10-11, 12-2, A-2, B-2, C-2
gateway parameters for gateway using SNA, 9-13
gateway parameters for gateway using TCP/IP for IMS Connect, 10-11
new parameters on gateway using SNA, 12-3
new startup shell parameters, 12-5
parameters changed since V4, 12-4
InstallActions.log, 4-8
listener.ora, 4-9, 5-2, 5-3, A-5, A-6
oralu62.asm, 8-6
orapl62.asm, 8-2, 8-4, 8-6, 8-7
pgaccau.sql, 9-14
pgacctg.asm, 9-21
pgacics.sql, 9-16, 9-17
pgadb2c.cob, 9-21
pgaecho.sql, 9-16, 10-13
pgaflip.asm, 8-2, 8-5, 8-6, 8-8
pgaflip.jcl, 8-2, 8-6, 8-8
pgaidms.sql, 9-16, 9-18
pgaim.sql, 9-19, 10-15
pgaims.sql, 9-16, 10-13, 10-14
pgamvsql.sql, 9-16, 9-20
pgareco.asm, 9-21
PGAU control files, 4-3
pgavsn.sql, 9-16, 10-13
pgdadev.sql, 9-11, 10-8
pgdappub.sql, 9-11, 10-8
prvtgpb.sql, 9-8
README.doc, 9-22, 10-16
tnsnames.ora, 4-9, 5-2, 5-3, 9-6, 10-5, A-5, A-6
trandef.doc, 8-4
utlpq.sql, 9-8
utlfraw.sql, 9-8
FLIP transaction
OLTP configuration
and verification for APPC/MVS, 9-20
and verification for CICS Transaction Server for z/OS, 9-17
and verification for IDMS-DC, 9-18
and verification for IMS/TM on gateway using SNA, 8-6, 9-19
and verification for IMS/TM on gateway using TCP/IP, 8-8, 10-14
function
put_line, 9-5, 10-4
functions
see RPC (remote procedural call)
See UTL_PG
see UTL_RAW
G

gateway, 1-7
access to IBM datastores, 1-2
communication overview, 1-9
communications with all platforms, 1-2
compatibility with other SNA-enabled products, 3-4
component release number, 2-2
components, 1-7, 9-2
for SNA and TCP/IP for IMS Connect, 1-9
configuring, 9-2
for multiple users, on gateway using TCP/IP for IMS Connect, 10-8
for SNA, 5-3
for TCP/IP for IMS Connect, 10-2, 10-11
configuring for multiple users on gateway using SNA, 9-10
creating SNA definitions for, using SNA Server Manager, 6-4
de-installing, 4-8
directory locations for configuration, 9-2, 10-2
factors affecting memory requirements, 3-2
features
application transparency, 1-3
code generator, 1-4
fast interface, 1-3
flexible interface, 1-3
location transparency, 1-3
Oracle server integration, 1-3
performs automatic conversions, 1-4
site autonomy and security, 1-4
support for tools, 1-3
functions, using SNA, 1-11
initialization files, 9-2
initialization parameters
also see PGA parameters
described, 9-13, 10-11
for gateway using SNA, A-1, A-2
new and changed since Version 4
gateway, 12-3
renamed since V4, 12-4
SET, 9-13, 10-11, A-2, B-2
stored, D-3
installation
first-time install, configuring the integrating server, 9-5, 10-4
pre-installation procedures, 4-4
verification, 9-16, 10-13
with Oracle Universal Installer action items, 4-6
installation steps, 4-5
installing, 4-1
known restrictions, when using SNA, 2-4
migrating to new release, using SNA, 12-2
network attachment requirements, 3-2
overview, 1-2
parameter files, 9-13, 10-11
also see gateway initialization parameters, and PGA parameters
initPGA.ora, 9-13, 10-11
pre-installation steps for TPC/IP, 4-4
remote procedure, definition, 1-2
remote transaction initiation using SNA, 1-10
using TCP/IP, 1-10
remote transaction termination using SNA, 1-11
using TCP/IP, 1-11
requirements
hardware, 3-2
restoring to previous releases, 4-3
security options and overview, 11-2
also see, security
server
restoring previous version, 4-3
setting up multiple gateway instances, A-5
SNA security validation, 6-2, 11-4
SNA Server function, 11-4
startup shell parameters
FDS_CLASS_VERSION, 12-5
steps to install, via Oracle Universal Installer, 4-6
support for using TCP/IP for IMS Connect, 2-3
upgrading
from previous release, 4-2
preparing to upgrade, 4-3
gateway initialization parameters
for commit-confirm support, 9-15
new, 12-3
See gateway, also see, PGA parameters
gateway security requirements, 11-1
gateway using TCP/IP for IMS Connect
configuring communications package for, 7-1
description, 2-3
gateway initialization parameters needed, B-1
transaction types, 1-12
gpglocal, 9-7, 10-7
needed to compile PGAU-generated TIP
specifications, 9-7, 10-7
gpglocal package, 10-7
gpglocal.pkb script, 9-7, 10-7
gpglocal.pkh script, 9-7, 10-7
grant
access, 9-10, 10-8
authorization, 9-7, 10-7
execute, 9-7, 10-6
explicit, 9-10, 10-8
private, 9-10, 10-8
public, 9-10, 10-8
GTWSRV.EXE
no longer in product, D-4

H

hardware requirements, 3-2
Heterogeneous Services (HS), 12-3
and Oracle Net considerations, on gateway using
SNA, 12-2
catalogs
installing, on gateway using SNA, 9-6
installing, on gateway using TCP/IP for IMS
Connect, 10-5
definition, D-3
parameters needed for gateway using
TCP/IP, 12-3
HS parameters, 12-3
description, 12-2, 12-3
see also, (HS=)
HS_COMMIT_STRENGTH_POINT parameter, 12-4
HS_DB_DOMAIN parameter, 12-4
HS_DB_INTERNAL_NAME parameter, 12-4
HS_DB_NAME parameter, 12-4
HS_DESCRIBE_CACHE_HWM parameter, 12-4
HS_FDS_FETCH_ROWS parameter, 12-3
HS_LANGUAGE parameter, 12-4
HS_NLS_DATE_FORMAT parameter, 12-4
HS_NLS_DATE_LANGUAGE parameter, 12-4
HS_OPEN_CURSORS parameter, 12-4
HS_ROWID_CACHE_SIZE parameter, 12-4

I

IBM Communications Server
configuring, 6-15
creating SNA definitions, 6-16
definition types, 6-15
IBM mainframe requirements, 3-3
IDMS-DC
classifying for the gateway, 8-4
installation verification, 9-18
OLTP configuration verification, 9-18
verification of configuration, 9-18
IDMS-DC FLIP program, 8-5
implementation of the gateway
for SNA and TCP/IP for IMS Connect, 1-9
implied APPC, A-6
IMS Connect
and security, 11-5
mainframe requirements, for gateway using
TCP/IP, 3-4
TCP/IP support for, 2-3
IMS FLIP transaction, 8-6, 8-8
imsgen.asm file, 8-6, 8-8
IMS/TM
configuring for the gateway
using SNA, 8-6
installation verification
on gateway using SNA, 9-19
on gateway using TCP/IP for IMS
Connect, 10-14
mainframe requirements for gateway using
TCP/IP, 3-4
TP name length, A-3
verification of configuration
on gateway using SNA, 9-19
on gateway using TCP/IP for IMS
Connect, 10-14
independent LU, 8-2, 8-4, 8-6, 8-7
initialization files
See gateway initialization files, also see PGA
parameters
initiating remote transactions, 1-10
initPGA1.ora file, A-6
initPG2.ora file, 9-13, 10-11
initPGAU.ora file, A-6
initsid.ora file, 1-9, 9-13, 9-15, 10-11, 12-2, A-2, B-2, C-2
gateway parameters on gateway using SNA, 9-13
gateway parameters on gateway using TCP/IP for
IMS Connect, 10-11
HS parameter descriptions, 12-2, 12-3
new parameters, on gateway using SNA, 12-3
new startup shell parameters, 12-5
parameters changed since V4, 12-4
InstallActions.log file, 4-8
installation
steps, 4-5
installation verification
CICS on gateway using SNA, 9-17
gateway
with SNA, 9-16
with TCP/IP for IMS Connect, 10-13
IDMS-DC, 9-18
IMS/TM
on gateway using SNA, 9-19
on gateway using TCP/IP for IMS
Connect, 10-14
OLTP, 9-17
installing
and configuring the gateway, 4-1
preinstallation steps, 4-4
sample applications
on gateway for SNA protocol, 9-22
on gateway with TCP/IP for IMS
Connect, 10-16
IPC
key, 5-2
protocol, 5-2
ivtno.ctl, 10-3
ivtnod.sql, 10-3
ivtnv.ctl, 10-3
ivtnvd.sql, 10-3
K
key
IPC, 5-2
known restrictions
for PG4APPC, 2-4
for PGAU, 2-4
prior gateway releases, D-8
L
link service definition, 6-6
listener.ora file, 4-9, 5-2, 5-3, A-5, A-6
sample file for gateway using SNA, A-7
sample file for gateway using TCP/IP, B-5
LOG_DESTINATION parameter, 12-3
for gateway using SNA, 12-2
for gateway using TCP/IP, B-2
logmode entry name, 9-17
LTERM, 8-4
LU6.1 Adapter for LU6.2 applications, 8-6
LU6.2
and specifying SNA conversation security, 11-4
LUs, 6-2
also see independent LU and dependent LU
and gateway security, 11-3
dependent
for configuring LU6.2 for IMS/TM for the
gateway, 8-6
in SNA security validation, 11-4
in configuring APPC/MVS on the
gateway, 8-7
in configuring CICS Transaction Server for
z/OS, 8-2
in configuring IDMS-DC, 8-4
in configuring IMS/TM for the gateway, 8-6
vs. dependent, 6-2
M
mainframe requirements, 3-3
memory requirements, 3-2
Microsoft Host Integration Server
and LUs, 6-2
configuring, 6-2
creating SNA definitions on, 6-5
See SNA Server
Microsoft Windows
configuring the SNA Server, 6-1
migrating
an existing gateway to use TCP/IP, 12-5
backout considerations when migrating to new
release, 12-2
existing gateway instance to new release, using
SNA, 12-2
to 10.1.0.2.0
special parameters, 12-3
mode definition, 6-10
multi-conversational transaction type, for gateway
using TCP/IP, 1-11
N
network
configuring
with SNA, 5-2
reconfiguring, 5-2
networking products required, 3-3
non-persistent socket transaction type for TCP/IP for
IMS Connect, 1-12
O
obsolete parameters, in gateway using SNA, 12-4
OLTP, 6-13, A-4, A-5
and dependent LUs, 6-2
and SECURITY=PROGRAM option, 11-4
and SECURITY=PROGRAM option, on platforms
using TCP/IP, 11-5
configuration, 8-1
configuration verification
APPC/MVS, 9-20
CICS Transaction Server for z/OS, 9-17
IDMS-DC, 9-18
on gateway using SNA, 9-16
on gateway using SNA IMS/TM, 9-19
on gateway using TCP/IP for IMS
Connect, 10-13
configuring
APPC/MVS for the gateway, 8-7
CICS Transaction Server for z/OS for the gateway, 8-2
for gateway using TCP/IP for IMS Connect, 10-11
IDMS-DC for the gateway, 8-4
IMS/TM for the gateway, 8-6
to allow gateway access, 4-2
currently supported types, 8-2, 9-17
defining PTERM and LTERM (configuration of IDMS-DC), 8-4
definition, 1-5
for TCP/IP for IMS Connect, 1-7
in gateway architecture featuring SNA, 1-7
in gateway using TCP/IP, 1-7
installation verification, 9-17, 10-14
post-installation steps
on gateway using SNA, 9-22
on gateway using TCP/IP for IMS Connect, 10-16
remote, 1-1
requirements, 3-3
security and inbound APPC session requests, 6-2
security on the gateway, 11-2
SNA security option
on all platforms, 11-4
user ID mapping, 11-3
verifying configuration
on gateway using SNA, 9-17
on gateway using TCP/IP for IMS Connect, 10-14
OLTP for SNA
mainframe requirements, 3-3
OLTP for TCP/IP
IBM mainframe requirements, 3-4
one-shot transaction types, for gateway using SNA, 1-11
online transaction processor
See OLTP
Oracle Database 10g Server
and networking products needed, 3-3
release 10.1.0.2.0 needed, 2-3
Oracle global transaction ID, 9-21
Oracle Heterogeneous Services
See Heterogeneous Services
Oracle integrating server, 1-10, 2-3, 4-2, 4-4, 5-2, 9-6, 9-7, 10-5, 10-7, 11-3, A-4, A-5, A-6
and gateway security, 11-3
and TCP/IP for IMS Connect
pre-configuration steps, 10-2
component of the gateway, 1-7
configuring for commit-confirm, 9-14
definition, 1-5
enabling DBMS_OUTPUT PL/SQL package, 9-5, 10-4
logon authentication needed, 11-2
multiple servers on the gateway
using TCP/IP, 1-7
multiple servers on the gateway using SNA, 1-7
precompiles PL/SQL package, 1-3
READ_ONLY mode, A-4
role
in gateway communication, 1-9
in logon security, 11-3
in starting the gateway, 1-9
shipped with PL/SQL packages, 9-10, 10-8
stores PL/SQL, C-2
upgrading
from previous releases, 9-8
verifying
APPC/MVS configuration, 9-20
gateway installation with SNA, 9-16
gateway installation with TCP/IP for IMS Connect, 10-13
IMS/TM, on gateway using SNA, 9-19
IMS/TM, on gateway using TCP/IP for IMS Connect, 10-15
version requirements, 3-3
Oracle Integrating Server Listener, 5-3
Oracle Net, 1-5, A-3
considerations, when migrating gateway featuring SNA, 12-2
deployment in the gateway architecture, 1-7
Heterogeneous services/tnsnames.ora
considerations, on gateway using SNA, 12-2
on gateway using TCP/IP, 8-2
security considerations, 11-3
to start the gateway, 1-9
version needed, 2-2
Oracle Procedural Gateway for APPC
also see gateway
de-installing, 4-8
development environment, 1-4
functions, 1-11
Oracle Universal Installer
using, 4-6
to de-install the gateway, 4-8
to install gateway, 4-6
oralu62.asm file, 8-6
ORAPGA.APPCMVS.SAMPLIB, 8-7
oraplu62.asm file, 8-2, 8-4, 8-6, 8-7
override
user ID and password, 11-4, 11-5

P
package

DBMS_OUTPUT, 9-5, 10-4
gpglocal, 10-7
UTL_PG, 9-6, 9-10, 10-5, 10-8
invalidated or deinstalled, 9-8
UTL_RAW, 9-5, 10-4
invalidated or deinstalled, 9-8
package specifications
avoid reinstalling, 9-8
reinstalling, 9-8
parameter files
See gateway initialization files
See PGA parameters
See RRM parameters
parameters
changed since Release 4, on gateway using SNA or
TCP/IP, 12-3
FDS_CLASS_VERSION, 12-5
for configuring TCP/IP for IMS Connect, 7-2
gateway initialization parameter, described, 9-13,
10-11
needed for commit-confirm support, 9-15
new
FDS_CLASS (startup shell), 12-3
FDSINSTANCE (startup shell), 12-3
obsolete, in gateway using SNA, 12-4
PGA
described for SNA, 9-13
described for TCP/IP, 10-11
renamed since version 4 (gateway
initialization), 12-4
see PGA parameters and gateway
USING, 5-2
password
change using ALTER USER command, 9-6, 10-5
Oracle authentication, 11-2
Oracle password to be used by gateway, A-3
using TCP/IP, B-3
overrides, 11-4, 11-5
with operating system authentication, 11-2
PDS (partitioned dataset), 8-7
persistent socket transaction type
for TCP/IP for IMS Connect, 1-12
persistent transaction type, for gateway using
SNA, 1-11
PG Data Dictionary
See PG DD
PG DD
after upgrade, 4-3
allowing multiple users, 9-10, 10-8
creating public synonyms for multiple
users, 9-10, 10-8
definition, 1-5
install script, 9-7, 10-6
installing for gateway configuration, 9-6, 10-5
no access from earlier PGAU versions, 4-3
packages
dropping after de-installing the gateway, 4-8
restoring previous version, 4-3
tables, 9-10, 10-8
upgrade when upgrading gateway, 9-9
using PGAU to upgrade existing entries, 9-11,
10-9
PG4APPC
known restrictions, 2-4
see gateway
PG4APPC support for TCP/IP
see gateway using TCP/IP for IMS Connect
pg4pwd utility, 11-7
definition, C-2
recommended security utility feature, 11-7
recommended security utility feature, on gateway
using SNA, C-2
pg4tcpmap table, 12-5, 12-6
see PGA_TCP_IMSC table
pg4tcpmap tool, 10-12, 11-5, 11-6, 12-5, 12-6, B-3
definition, C-2
function, 1-3, 10-12
in remote transaction initiation, 1-10
in the gateway, 2-3
on gateway using TCP/IP, 10-6, B-2
output sample, B-4
PGA
definition, C-2
initialization files
initPGALora and initPGAUora, A-6
PGA parameters
described, 9-13, 10-11
list of, for gateway using TCP/IP, B-2
LOG_DESTINATION, A-2
on gateway using
SNA, A-2
TCP/IP, B-2
PGA_CAPABILITY, 9-13, 10-11, A-2, B-2
choosing settings, A-4
options for updating foreign databases, A-4
protections against data problems, A-4
PGA_CAPABILITY, for gateway using
TCP/IP, B-2
PGA_CONFIRM, A-3
choosing settings, A-6
PGA_LOG_DB, A-3, B-3
PGA_LOG_PASS, A-3, B-3
on gateway using TCP/IP, B-3
PGA_LOG_USER, A-3, B-3
PGA_RECOVERY_PASS, A-3
PGA_RECOVERY_TPNAME, A-3
PGA_RECOVERY_USER, A-4
PGA_SECURITY_TYPE, A-4
PGA_SECURITY_TYPE=NONE, 11-4, 11-5, A-4, B-3
PGA_TCP_DB parameter (TCP/IP only), 12-3
PGA_TCP_DB parameter, 11-4, 11-5
PGA_TCP_DB, A-3, B-3
on gateway using TCP/IP, B-3
TRACELevel, A-4
on gateway using TCP/IP, B-3
PGA_CAPABILITY
See PGA parameters
PGA_CC_PENDING
table
unsuccessful rollback, D-7
PGA_CONFIRM
See PGA parameters
PGA security parameter
gateway using SNA or
TCP/IP
PGA_SECURITY_TYPE
See PGA parameters
PGA_SECURITY_TYPE parameter
and TCP/IP security, 11-5
PGA_SECURITY_TYPE=NONE, 11-4, 11-5
PGA_TCP_DB
PGA parameter
for gateway using TCP/IP, B-3
PGA_TCP_DB parameter (TCP/IP only), 12-3
PGA_TCP_DB PGA parameter (TCP/IP only), B-3
PGA_TCP_IMSC table, 12-5, 12-6
for mapping SNA parameters to TCP/IP, 10-12
loading, on gateway using TCP/IP, 10-12
PGA_TCP_PASS parameter (TCP/IP only), 12-3
PGA_TCP_PASS PGA parameter (TCP/IP only), B-3
PGA_TCP_USER parameter (TCP/IP only), 12-3, B-3
PGAADMIN, 9-7, 9-16, 10-6, 10-7, 10-13
creating the gateway administrator user ID, 9-6, 10-5
granting access to additional users, 9-10, 10-8
granting execution privileges on DBMS_PIPE, 9-7, 10-6
initial password during creation, 9-6, 10-5
pgaccau.sql file, 9-14
pgacclg.asm file, 9-21
pgacics.sql file, 9-16, 9-17
pgacr8au.sql script, 9-6, 10-5
pgadb2c.cob file, 9-21
pgacflip.asm file, 9-21, 9-10, 10-13
pgacflip.jcl file, 8-2, 8-5, 8-6, 8-8
pgacrm.sql file, 9-16, 9-17
PGA setting up, A-6
pgaidms.sql file, 9-16, 9-18
pgaims.sql, 10-3
pgaims.sql file, 9-16, 9-19, 10-13
on gateway using TCP/IP, 10-14, 10-15
PGAINIT, 1-10
PGAINIT function, 1-10, C-2
PGAINIT TIP, 10-12
pgamvs.sql file, 9-16, 9-20
pgareco.asm file, 9-21
PGATERM function, 1-10, C-2
pgatiptr.sql script, 9-7, 10-7
PGAU, 5-3
accesses definitions in PG DD, 1-5
control files, 4-3
definition
used to generate TIP specifications, 1-5
-generated TIP specifications, 1-9
-generated TIP specifications use UTL_PG, 9-6, 10-5
-generated TIP specifications use UTL_RAW, 9-5, 10-4
generating TIP specifications, PL/SQL v3
compatibility, D-3
known restrictions in this release, 2-4
purpose of PGDL, C-2
restoring previous versions, 4-3
setting up, A-6
upgrading existing PG DD entries, 9-11, 10-9
PGAU commands
DEFINe DATA
COBOL COPY REPLACE restrictions, 2-4
GENERATE, 9-11, 10-9
produces TIP in output files, 9-12, 10-10
to upgrade existing TIPS, 9-11, 10-9
pgavsn.sql file, 9-16, 10-13
PGAXFER function, 1-10, C-2
PGDD
compatibility issues between new and older gateways, 9-10
pgddadev.sql file, 9-11, 10-8
script, 9-11, 10-8
pgddapub.sql file, 9-11, 10-8
script, 9-11, 10-8
pgddcr8.sql script, 9-10, 10-8
pgddcr8.sql script, 9-7, 10-6
pgddcr8s.sql script, 9-10, 10-8
PGDDDEF role, 9-10, 10-8
pgdddel.sql script, 4-8
PGDDGEN role, 9-10, 10-8
adding a privilege for upgrading PG DD entries, 9-11, 10-9
pgddupgr.sql script, 9-9
PGDL (Procedural Gateway Definition Language)
definition, C-2
PL/SQL, 1-5
code generator, 1-4
datatypes, 1-9
converted to RAW, 1-10
function in the gateway, 1-2, 1-9
running pgatiptr.sql script to create routines, 9-7, 10-7
UTL_PG package function, C-3
UTL_RAW function, C-2
UTL_RAW package installation on gateway using SNA, 9-5
on gateway using TCP/IP for IMS Connect, 10-4
PL/SQL package
definition, 1-5, C-2
developer access to, 9-10, 10-8
enabled, 9-5, 10-4
functions, 1-9
See TIP
PL/SQL stored procedure, 9-14
used for logging transactions, 9-14
PL/SQL stored procedure specification also called “TIP”
See PL/SQL package
post-installation steps for OLTP
on gateway using SNA, 9-22
on gateway using TCP/IP, 10-16
pre-installation steps for SNA, 4-4
privileges
needed to create TIPS, 9-11, 10-9
Procedural Gateway Administration
See PGA
Procedural Gateway Administration Utility
see PGAU, 1-9
processor OLTP
configuring, for commit-confirm, 9-15
processor requirements, 3-2
product set in this release, 2-2
protocol
IPC, 5-2

Index-8
TCP, 5-2
prvtpgb.plb
   file, 9-8
   script, 9-6, 9-8, 10-5
prvtrawb.plb script, 9-5, 9-8, 10-4
PTERM, 8-4
public synonyms for multiple PG DD users, 9-10, 10-8
put_line function, 9-5, 10-4

R

RACF, 11-6, B-3
READ ONLY
   PGA_COMPATIBILITY setting, A-4
README.doc file, 9-22, 10-16
RECO
   Oracle recovery process, D-7
recompiling TIPs
   See TIP
reinstallation of package specifications, 9-8
release-specific information
   restrictions, 2-4
remote host transactions (RHT)
   types, 1-11
remote procedural call
   See RPC
remote procedure
   definition, C-2
remote transaction initiation
   on gateway using SNA, 1-10
   on gateway using TC/IP, 1-10
remote transaction program
   See RTP
remote transaction termination
   on gateway using SNA, 1-11
   on gateway using TCP/IP for IMS Connect, 1-11
requirements
   documentation, 3-4
   hardware, 3-2
   network attachments, 3-2
   software, 3-2
   system, 3-1
restoring a previous release of the gateway, 4-3
restrictions
   on gateway using SNA, 2-4
RHDCNOS multiple session service manager, 8-4
role
   PGDDDEF, 9-10, 10-8
   PGDDGEN, 9-10, 10-8
ROLLBACK, 3-3, A-4
rollback
   in bug no. 689304, D-7
RPC
   definition, 1-5
   function
      PGAINIT, 1-10, C-2
      PGATERM, C-2
      PGAXFER, 1-10, C-2
   within the gateway, 1-2, 1-10
processing, 1-1
RTP
   definition, 1-5
   executing, 1-5
   function in the gateway, 1-2
   PGA_COMPATIBILITY settings for read-only RTPs, A-4

S

sample applications
   included, 9-22, 10-16
   installing, 9-22, 10-16
savepoint
   not supported, 2-2
script
   gpglocal.pkb, 9-7, 10-7
   gpglocal.pkh, 9-7, 10-7
   pgacr8au.sql, 9-6, 10-5
   pgddadev.sql, 9-11, 10-8
   pgddapub.sql, 9-11, 10-8
   pgddcr8r.sql, 9-10, 10-8
   pgddcr8.sql, 9-7, 10-6
   pgddcr8s.sql, 9-10, 10-8
   pgdddel.sql, 4-8
   pgddupgr.sql, 9-9
   prvtpgb.plb, 9-6, 9-8, 10-5
   prvtrawb.plb, 9-5, 9-8, 10-4
   utlpg.sql, 9-6, 9-8, 10-5
   utlraw.sql, 9-5, 9-8, 10-4
security
   and database links, 11-3
   and SNA validation, 11-4
   authenticating application logons, 11-2
   authentication mechanisms
      in SNA security, 11-4
      for TCP/IP for IMS Connect, 11-5
   link accessibility for public and private databases, 11-3
   links and CONNECT clauses, 11-3
   overview of gateway security requirements, 11-2
   passwords, on gateway using SNA or TCP/IP, 11-7
   processing inbound connections, 6-2
   specifying SNA conversation security, 11-4
   security validation, 11-4
SECURITY=NONE SNA security option, 11-4
SECURITY=NONE TCP/IP security option, 11-5
SET
   gateway initialization parameter, 9-13, 10-11
   SET command, 9-13, 10-11
   shells
      see Bourne, Korn, and C shells, 4-1
SID
   number of characters in SID name, D-4
Side Information
   aka CPI-C symbolic destination names, 6-13
   side profile name, 9-17
SINGLE_SITE
   and PGA_COMPATIBILITY parameter, A-4
SNA
and gateway components, 1-7
gateway initialization file passwords, 11-7
implementation of the gateway, 1-9
location of gateway initialization parameters, A-2
migrating existing gateway to the new release, 12-2
new gateway initialization parameters, 12-3
PGA parameters, A-2
preinstallation procedures, 4-4
remote transaction initiation, 1-10
remote transaction termination on the gateway, 1-11
security validation, 6-2, 11-4
transaction types, 1-11
using SNA Node Configuration menu, 6-15
SNA APPC
also see APPC
function in the gateway, 1-2
SNA communication package, 8-4, 9-17, 9-18, 9-19, 9-20
configuration for the gateway, 5-3
SNA definitions
See SNA Server definitions
SNA Node Configuration
using, to configure IBM Communications Server, 6-15
SNA profiles, 11-4
SNA protocol
gateway initialization parameters, A-1
SNA security options
SECURITY=None, 11-4
SECURITY=PROGRAM, 11-4
SNA Server
and SNA security validation, 11-4
configuring an IBM Communications Server, 6-15
configuring on Windows, 6-1
connection definition, 6-7
CPI-C symbolic destination names, 6-13
definition types, 6-3
dependent LUs, 6-2
function in gateway communication, 11-4
independent LUs, 6-2
link service definition, 6-6
mode definition, 6-10
remote LU definition, 6-12
required for Microsoft Windows, 3-3
SNA Server definition
creating, using MS Host Integration Server, 6-5
SNA Server Manager, 6-5
creating SNA definitions, using MS Host Integration Server, 6-5
using, to create SNA definitions for the gateway, 6-4
SNA Server selection, 6-5
SNACFG command, 6-4
snacfg.ctl file
sample server definitions, 6-3
SNASVCMG mode entry, 8-4
socket file descriptor
returned by TCP/IP network to PGAINIT, 1-10
software requirements, 3-2
SQL*Plus
sample, used when gateway and Oracle integrating server share machine, 9-6, 10-5
to configure Oracle integrating server, 9-5, 10-4, 10-6
use in configuring Oracle integrating server for Commit-Confirm, 9-14
using to connect to Oracle integrating server, 9-6, 10-5
startup shell script
file
new parameter added, D-2
statement
CDMSLIB DD, 8-5
DESCRIBE, 9-5
describe, 10-4
DFHRPL DD, 8-2
system identifier
choosing, 4-4
see SID
system requirements, 3-1

T
TCP protocol, 5-2
TCP/IP
specifying conversation security, 11-5
TCP/IP for IMS Connect
and Remote Transaction Initiation, 1-10
configuration parameters needed, 7-2
configuring
for the gateway, 10-11
gateway to permit multiple users, 10-8
function in the gateway, 1-2
gateway initialization file passwords, 11-7
gateway initialization parameters, list, B-1
gateway preinstallation procedures, 4-4
gateway support for, description, 1-3, 2-3
Heterogeneous Services parameters needed, 12-3
HS parameter descriptions, 12-2, 12-3
implementation of the gateway, 1-9
IMS Connect release required on IBM mainframe, 3-4
installing sample applications, 10-16
loading the PGA_TCP_IMSC table, 10-12
mapping SNA parameters to, 10-12
migrating existing gateway using SNA to TCP/IP, 12-5
necessary to recompile TIPs when changing communication protocol, 10-14
new gateway initialization parameters, 12-3
non-persistent socket transaction type, 1-12
OLTP in gateway architecture, 1-7
parameter files
also see gateway initialization parameters, and PGA parameters
performing post-installation procedures, 10-16
persistent socket transaction type, 1-12
pg4tcpmap tool output sample, B-4
PGA parameters, 10-11, B-2
PGA_TCP_DB parameter, B-3
PGA_TCP_USER parameter, B-3
remote transaction initiation, 1-10
remote transaction termination, 1-11
security, 11-5
security options
  SECURITY=NONE, 11-5
  SECURITY=NONE, on all platforms, 11-5
  SECURITY=PROGRAM, 11-5
support for IMS connect, 2-3
TIP recompile needed on upgrade, 4-3, 10-14
TRACE_LEVEL parameter, B-3
transaction types, 1-12
using pg4tcpmap tool, B-2
verifying
gateway installation, 10-13
OLTP configuration, 10-14, 10-15
TCP/IP protocol adapter
terms, gateway terms defined, 1-5
TIP
  Also called PL/SQL package
body output files, 9-12, 10-10
corrections, 1-4
conversions, 1-4
converting PL/SQL datatypes to RAW, 1-10
definition, 1-5
developer access to PL/SQL packages, 9-10, 10-8
developer authorization on gpglocal, 9-7, 10-7
functions, 1-9
  in Oracle integrating server, 1-10
invalidated if package specifications
reinstalled, 9-8
override, 11-4
override, in security for TCP/IP, 11-5
recompile
  after reinstalling package specifications, 9-8
  on upgrade from Release 4.0.1, 4-3
recompile upon upgrade from SNA to
TCP/IP, 4-3, 10-14
recompiling when changing from SNA to
TCP/IP, 10-14
regenerate to upgrade function and
maintenance, 9-11, 10-9
remote transaction initiation (PGAINIT), 1-10
specification output files, 9-12, 10-10
specifications, 9-7, 9-10, 9-11, 10-7, 10-8, 10-9
generated by PGAU, 1-9, D-3
PL/SQL v3 compatibility, D-3
use UTL_PG, 9-6, 10-5
use UTL_RAW, 9-5, 10-4
specifying LUs, 6-3
trace access PL/SQL routines, 9-7, 10-6
upgrade considerations from previous
versions, 4-3
TNS listener, 5-2
tnsnames.ora file, 4-9, 5-2, 5-3, 9-6, 10-5, A-5, A-6
and Oracle Net considerations, 12-2
sample file for gateway using SNA, A-7
sample file for gateway using TCP/IP, B-6
TP name, A-3
trace access, 9-7, 10-6
TRACE_LEVEL parameter, 12-3, A-4
  on gateway using SNA, A-4
  on gateway using TCP/IP for IMS Connect, B-3
trandef.doc file, 8-4
Transaction Interface Package
  See TIP
transaction socket
  transaction type for TCP/IP, 1-12
transaction types
  for TCP/IP for IMS/Connect, 1-12
  one-shot, persistent and multi-conversational, for
SNA, 1-11
transferring
  initsid.ora gateway initialization file
parameters, 12-2
transparency
  (application), 1-3
  (location), on gateway using SNA, 1-3
U
upgrading
  considerations, 4-3
  existing TIP specifications, 9-11, 10-9
user ID
  as security authentication, 11-2
user ID mapping
  OLTP, 11-3
USING parameter, 5-2
utility
  pg4pwd, 11-7, C-2
UTL_PG, 9-10, 10-8
  installing, 9-6, 10-5
  package, 9-10, 10-8
  definition, C-3
  invalidated or deinstalled, 9-8
UTL_RAW, 9-5, 9-10, 10-4, 10-8
  interface
    PL/SQL package, 9-10, 10-8
    package
      invalidated or deinstalled, 9-8
    PL/SQL package
      definition, C-2
utlgpg.sql
  file, 9-8
script, 9-6, 9-8, 10-5
utltraw.sql
  file, 9-8
script, 9-5, 9-8, 10-4
V
VTAM, 8-6, 8-7
  configuring for connection to the gateway, 8-2, 8-4
VTAM logmode table, 8-2, 8-4, 8-6, 8-7
W
Windows
  and security,  11-4
  communication protocol needed,  3-3
  configuring SNA,  5-3
  operating system,  1-7
  processing inbound connections,  6-2
  SNA conversation security,  11-4

Z
z/OS,  1-3, 1-5, 3-4, 8-2, 8-4