std::enable_if

From cppreference.com
< cpp‎ | types
 
 
 
Type support
Basic types
Fundamental types
Fixed width integer types (C++11)
Numeric limits
C numeric limits interface
Runtime type information
Type traits
Type categories
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Type properties
(C++11)
(C++11)
(C++14)
(C++11)
(C++11)(until C++20)
(C++11)(deprecated in C++20)
(C++11)
Type trait constants
Metafunctions
(C++17)
Endian
(C++20)
Constant evaluation context
Supported operations
Relationships and property queries
(C++11)
(C++11)
Type modifications
(C++11)(C++11)(C++11)
Type transformations
(C++11)
enable_if
(C++11)
(C++17)
(C++11)(until C++20)(C++17)
 
Defined in header <type_traits>
template< bool B, class T = void >
struct enable_if;
(since C++11)

If B is true, std::enable_if has a public member typedef type, equal to T; otherwise, there is no member typedef.

This metafunction is a convenient way to leverage SFINAE to conditionally remove functions from overload resolution based on type traits and to provide separate function overloads and specializations for different type traits. std::enable_if can be used as an additional function argument (not applicable to operator overloads), as a return type (not applicable to constructors and destructors), or as a class template or function template parameter.

Member types

Type Definition
type either T or no such member, depending on the value of B

Helper types

template< bool B, class T = void >
using enable_if_t = typename enable_if<B,T>::type;
(since C++14)

Possible implementation

template<bool B, class T = void>
struct enable_if {};
 
template<class T>
struct enable_if<true, T> { typedef T type; };

Notes

A common mistake is to declare two function templates that differ only in their default template arguments. This is illegal because default template arguments are not part of function template's signature, and declaring two different function templates with the same signature is illegal.

/*** WRONG ***/
 
struct T {
    enum { int_t,float_t } m_type;
    template <typename Integer,
              typename = std::enable_if_t<std::is_integral<Integer>::value>
    >
    T(Integer) : m_type(int_t) {}
 
    template <typename Floating,
              typename = std::enable_if_t<std::is_floating_point<Floating>::value>
    >
    T(Floating) : m_type(float_t) {} // error: cannot overload
};
 
/* RIGHT */
 
struct T {
    enum { int_t,float_t } m_type;
    template <typename Integer,
              std::enable_if_t<std::is_integral<Integer>::value, int> = 0
    >
    T(Integer) : m_type(int_t) {}
 
    template <typename Floating,
              std::enable_if_t<std::is_floating_point<Floating>::value, int> = 0
    >
    T(Floating) : m_type(float_t) {} // OK
};

Care should be taken when using enable_if in the type of a template non-type parameter of a namespace-scope function template. Some ABI specifications like the Itanium ABI do not include the instantiation-dependent portions of non-type template parameters in the mangling, meaning that specializations of two distinct function templates might end up with the same mangled name and be erroneously linked together. For example:

// first translation unit
 
struct X {
    enum { value1 = true, value2 = true };
};
 
template<class T, std::enable_if_t<T::value1, int> = 0>
void func() {} // #1
 
template void func<X>(); // #2
 
// second translation unit
 
struct X {
    enum { value1 = true, value2 = true };
};
 
template<class T, std::enable_if_t<T::value2, int> = 0>
void func() {} // #3
 
template void func<X>(); //#4

The function templates #1 and #3 have different signatures and are distinct templates. Nonetheless, #2 and #4, despite being instantiations of different function templates, have the same mangled name in the Itanium C++ ABI (_Z4funcI1XLi0EEvv), meaning that the linker will erroneously consider them to be the same entity.

Example

#include <type_traits>
#include <iostream>
#include <string>
 
namespace detail { struct inplace_t{}; }
void* operator new(std::size_t, void* p, detail::inplace_t) {
    return p;
}
 
// #1, enabled via the return type
template<class T,class... Args>
typename std::enable_if<std::is_trivially_constructible<T,Args&&...>::value>::type 
    construct(T* t,Args&&... args) 
{
    std::cout << "constructing trivially constructible T\n";
}
 
// #2
template<class T, class... Args>
std::enable_if_t<!std::is_trivially_constructible<T,Args&&...>::value> //Using helper type
    construct(T* t,Args&&... args) 
{
    std::cout << "constructing non-trivially constructible T\n";
    new(t, detail::inplace_t{}) T(args...);
}
 
// #3, enabled via a parameter
template<class T>
void destroy(
    T* t, 
    typename std::enable_if<
        std::is_trivially_destructible<T>::value
    >::type* = 0
){
    std::cout << "destroying trivially destructible T\n";
}
 
// #4, enabled via a template parameter
template<class T,
         typename std::enable_if<
             !std::is_trivially_destructible<T>{} &&
             (std::is_class<T>{} || std::is_union<T>{}),
            int>::type = 0>
void destroy(T* t)
{
    std::cout << "destroying non-trivially destructible T\n";
    t->~T();
}
 
// #5, enabled via a template parameter
template<class T,
	typename = std::enable_if_t<std::is_array<T>::value> >
void destroy(T* t) // note, function signature is unmodified
{
    for(std::size_t i = 0; i < std::extent<T>::value; ++i) {
        destroy((*t)[i]);
    }
}
/*
template<class T,
	typename = std::enable_if_t<std::is_void<T>::value> >
void destroy(T* t){} // error: has the same signature with #5
*/
 
// the partial specialization of A is enabled via a template parameter
template<class T, class Enable = void>
class A {}; // primary template
 
template<class T>
class A<T, typename std::enable_if<std::is_floating_point<T>::value>::type> {
}; // specialization for floating point types
 
int main()
{
    std::aligned_union_t<0,int,std::string> u;
 
    construct(reinterpret_cast<int*>(&u));
    destroy(reinterpret_cast<int*>(&u));
 
    construct(reinterpret_cast<std::string*>(&u),"Hello");
    destroy(reinterpret_cast<std::string*>(&u));
 
    A<int> a1; // OK, matches the primary template
    A<double> a2; // OK, matches the partial specialization
}

Output:

constructing trivially constructible T
destroying trivially destructible T
constructing non-trivially constructible T
destroying non-trivially destructible T

See also

(C++17)
void variadic alias template
(alias template)